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1. INTRODUCTION.

1.1. Background.
Originally developed in the Xerox research center in 1976 Ethernet has evolved over 

the years to become one of the most popular technologies for computer networks. Driven by 

the popularity of the Internet and local area networks Ethernet is massively used in almost 

every environment, including residential, commercial and industrial, providing a backbone for 

all communication services. Each field of application has different requirements, and different 

communication protocols, working on top Ethernet are used to fulfill them. Internet Protocol 

(IP) is probably the most common standard in the world used for example in the Internet itself 

and local area networking (LAN). However, due to more stringent requirements of industrial 

networks other communication protocols have been developed. One of them, which is in the 

scope of this work, is the IEC61850 standard used in electrical substation automation systems, 

that allows exchanging real-time data.

Although the Ethernet-based networks are considered a common standard,  in recent 

years  we  can  observe  a  shift  towards  wireless  data  transmission  technologies  that  bring 

benefits  to  many  applications.  Both  technologies  have  pros  and  cons  but  undoubtedly 

additional qualities can be achieved if both technologies are integrated. Such integration is 

also a challenge, because merging two different communication systems requires a thorough 

understanding of the combined technologies and their limitations. In  this  work  aspects  of 

combining Ethernet and ZigBee wireless networks will be discussed. 

The  issues  and  solutions  presented  in  this  work  are  related  to  the  aspect  of 

communication  between  new  components  of  so  called  “smart  grid”,  which  is  the  new 

approach to building power grid networks. Among other applications, such integration may be 

beneficial to electrical active substation automation systems, which are important components 

of the energy network of the future.

This work has been realized as a part of the KIC InnoEnergy “Active Sub-Station” 

project, dealing with, inter alia, the area of distribution sub-stations.
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1.2. The goal.
The  purpose  of  this  work  is  to  design  a  device  used  to  connect  Ethernet-based 

networks and ZigBee wireless network. Such device will be called a bridge. Two Ethernet-

based networks are considered in this work, one using most common TCP/IP protocol and the 

second  using  IEC61850  industrial  grade  protocol,  used  widely  in  substation  automation 

systems. For this reason two versions of the bridge have been built and they are described in 

this work.

The first version – the ZigBee-to-Ethernet bridge - uses TCP protocol and provides 

embedded HTTP server to visualize data from ZigBee nodes within the ZigBee Personal Area 

Network (PAN). Moreover Java web application is implemented and described, which allows 

to store data from many bridges into a MySQL database. 

The second presented version is  the ZigBee-to-IEC61850 bridge.  It  is  designed to 

meet  IEC61850  standard  requirements  and  to  connect  ZigBee  network  to  a  substation 

automation system.

1.3. Layout.
The thesis is divided into following chapters:

1. INTRODUCTION – discussion of the purpose and scope of work.

2. THEORETICAL BACKGROUND – discussion of concepts and technologies used in 

the project of a ZigBee-to-Ethernet, and a ZigBee-to-IEC61850 bridge.

3. DESIGN OF A ZIGBEE-TO-ETHERNET BRIDGE – presentation of the tools and 

components used to design hardware and software, architecture of the system and key 

aspects of the design. 

4. DESIGN  OF  A  ZIGBEE-TO-IEC61850  BRIDGE  –  description  of  hardware 

components, used tools, software libraries, algorithms, and architecture of the device 

connecting ZigBee and IEC61850 network. 

5. CONCLUSION – summary of the work.

6. REFERENCES – additional  resources  such  as  hardware  schematics,  SCL file  and 

HTML files are included.
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1.4. Abbreviations.
API – Application Program's Interface

CSMA/CD  - Carrier Sense Multiple Access / Collision Detection

FPU – Floating Point Unit

GOOSE – Generic Object Oriented Substation Event

GPIO – General Purpose Input/Output

GSSE – Generic Substation Status Event

HAL – Hardware Abstraction Layer

HMI – Human Machine Interface

IDE – Integrated Development Environment

IED – Intelligent Electronic Device

IP – Internet Protocol

JSF – Java Server Faces

LAN – Local Area Network 

LD – Logical Device

LN – Logical Node

LR-WPAN – Low Rate Wireless Personal Area Network

MAC – Media Access Control

MDI – Media Dependent Interface

MII – Media Independent Interface 

MMS – Manufacturing Message Specification

MPU – Memory Protection Unit

NV – Non Volatile

OSAL – Operating System Abstraction Layer

OSI – Open System Interconnection

PCB – Printed Circuit Board

PER – Packet Error Rate

RTOS – Real Time Operating System

SAS – Substation Automation System

SCL – System Configuration description Language

SNTP – Simple Network Time Protocol

SoC – System-on-Chip

SV – Sampled Values

TCP – Transmission Control Protocol
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UML – Unified Modeling Language

URL – Uniform Resource Locator

WSN – Wireless Sensor Networking

XML – Extensible Markup Language
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2. THEORETICAL BACKGROUND.

2.1. ISO-OSI reference model and Service Access Points.
ISO's OSI model is the reference model used in the telecommunication. It specifies the 

path for information to move it from application running in one computer, through a network 

to a application running in another computer. OSI model consists of seven layers: physical, 

data  link,  network,  transport,  session,  presentation  and  application.  A single  layer  offers 

services for the upper one, and uses the services from the layer below it. Such layer-based 

approach allows to  divide  telecommunication system into smaller  pieces,  which could  be 

better  managed,  updated and even interchanged.  The responsibilities  of  each layer  are  as 

follows:

• Physical Layer (PHY): defines the mechanical, electrical, procedural and functional 

specifications for basic functions of the physical link between communicating network 

systems [1].

• Data Link Layer: is responsible for providing reliable transmit and reception of data 

over physical network link. Data link layer is divided by IEEE into logical link control 

(LLC), and medium access control (MAC) sublayer. MAC manages protocol access to 

the physical medium and provides MAC addresses, which are unique for each device 

[1],  while  LLC manages  communication  between  devices  over  a  single  link  of  a 

network.

• Network Layer: is responsible for routing packets over networks, by using network 

addresses.

• Transport  Layer:  guaranties  that  data  is  delivered  without  errors  in  the  correct 

sequence from source to the destination.

• Session Layer: establishes, manages and terminates communication sessions between 

devices.

• Presentation Layer: provides functions to convert data to common data representation 

formats to make it convenient for application layer.

• Application Layer: provides the interface for user and defines the functionality of the 

application, which uses protocols from the lower layers.
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Figure 2.1. An illustration of the OSI protocol stack reference model and  corresponding layers of the TCP/IP 

Protocol Suite stack[2].

Not all protocols define all OSI seven layers. For example TCP/IP defines only four of them 

(see figure 2.1):

• Network interface – corresponds to the Physical and Data Link layer.

• Internet layer – is responsible for task handled by OSI's Network layer.

• Host-to-host layer – as the name implies, provides correct data transfer from source to 

the destination – the same as the OSI's Transport layer.

• Application layer – merges Application, Presentation and Session layers described by 

the OSI model.

Figure  2.2 shows how the  user  data  passes  down the  network  stack.  User  data  is 

created at the application layer. It may have to be divided into smaller pieces, because of the 

maximum length of the frame that is sent through the physical medium. Each layer adds to 

each piece of data some layer-specific information forming a protocol data unit (PDU). The 

name of this process is encapsulation.

For example in HTTP protocol user data is html document. Because in many cases this 

document is to large to send it as a whole, it has to be divided into smaller pieces called data. 

At the transport layer, the TCP protocol is used. It adds to the data a transport header and 

forms  so-called  segment  (transport  layer  PDU).  TCP  is  based  on  IP  protocol,  which 

corresponds to the network layer. At this layer, a network header is merged with the segment, 
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and after that it is called as a packet (network layer PDU).  Finally the packet, a frame header 

and a frame trailer  give a frame (data link layer PDU), which is  then sent by a physical 

medium.

Figure 2.2. The path of a user data through a network protocol layers [3].

Exchange of data, control and configuration commands between layers is provided by 

Service  Access  Points  (SAP).  A  SAP  defines  interface  of  the  specific  layer.  Diagram 

illustrated in Figure 2.3 presents possible transaction types  (so called primitives)  between 

SAP of the lower layer, and an abstract user, which usually is the upper layer.

Figure 2.3. Service Access Point mechanism and its primitives.
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If for example upper layer has data ready to send,  a request  primitive is used.  When the 

requested service is completed, the lower layer SAP sends a confirmation. Such confirmations 

usually indicates whether the operation was successful or not. Asynchronous events can be 

indicated by a lower layer by an indication SAP primitive, which can be acknowledged by a 

response primitive.

2.2. IEEE 802.15.4 Standard overview.

2.2.1. Wireless sensor network.

Wireless sensor network (WSN) is a network which consists of multiple wirelessly 

connected  elements  called  nodes.  The  basic  parts  of  each  node  is  a  radio  transceiver, 

microcontroller  and  sensors  used  to  monitor  various  parameters,  such  as  environmental, 

industrial,  medical  and  other.  One  network  can  consist  of  a  few to  thousands  of  nodes. 

Depending on the requirements of a concrete application different communication protocols 

are used. When choosing type of WSN network, the most important parameters are channel 

access  method,  used  frequency  bands,  possible  network  topologies,  a  throughput,  a  link 

budget,  a power consumption and a price.  There is  no one,  universal  WSN network type 

suitable  for  all  applications.  In  this  work  the  ZigBee  network  based  on  IEEE  802.15.4 

standard is used and is described in the following subsections.

2.2.2. Basic concepts of IEEE 802.15.4 standard.
The IEEE 802.15.4 standard has been developed to provide the solution for low-power 

and low data-rate Wireless Sensor Network requirements. The existence of standard decreases 

the cost of a WSN system, because manufacturers of integrated circuits, and developers do 

not  need  to  develop  their  own  low-level  solutions  and  could  focus  on  their  application. 

Moreover the time to market is shorter and interoperability of radio devices between many 

manufacturers is simpler to provide. 

The IEEE 802.15.4 standard provides lower network layers for a wireless personal 

area network. In contrast to IEEE 802.11 in which higher speeds are demanded and cost is not 

very critical,  the  discussed  standard  describes  the  wireless  network  in  which  devices  are 

cheap, most of them are battery powered, send small amount of information and do not need 

high data-rates [4]. Output power of the transmitter is small to provide communications over 

distances from several to hundreds of meters with data-rates up to 250 kbps. 

The  standard  is  still  under  development,  to  adapt  to  new requirements.   For  this 
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reason, many releases are yet available, which are summarized in the table 2.1 [4] .

IEEE 802.15.4

version

Short description

IEEE 802.15.4 - 2003 Initial release of the IEEE 802.15.4 standard. Two versions of PHY 

are described:

- for frequency band 868 and 915 MHz

- for frequency band 2.4 GHz
IEEE 802.15.4 - 2006 This version is provided for an increase in the possible data rate for 

lower frequency bands and defines new modulation schemes:

- three for 868 and 915 MHz

- one for 2.4 GHz
IEEE 802.15.4a Two new PHYs have been defined:

- using UWB technology

- using chirp spread spectrum at 2.4 GHz
IEEE 802.15.4c Updates for PHYs
IEEE 802.15.4d Updates for PHYs
IEEE 802.15.4e MAC enhancements to IEEE 802.15.4 in support of the ISA 100.11a 

application have been defined.
IEEE 802.15.4f Defines new PHYs for UWB, 2.4 GHz band and 433 MHz
IEEE 802.15.4g Defines new PHYs for smart neighbourhood networks, which could 

be used by a smart grid application.

Table 2.1. The IEEE 802.15.4 standard releases [4].

2.2.3. Stack architecture.
IEEE  802.15.4  defines  a  low  rate  wireless  personal  area  network  (LR-WPAN)  stack 

architecture, which is presented in Figure 2.4. Each block represents a specific layer. Arrows 

represent SAP interfaces between layers as described in the standard [5]. 
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Figure 2.4. LR-WPAN device architecture [5].  

Because IEEE 802.15.4 standard defines only a physical  and a MAC layer,  higher 

layers usually need to be developed. There is no one solution which fits all applications, so 

numerous of upper layer protocols have been developed. Some of them are presented in the 

table 2.2.
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Standard Short description
ZigBee This standard, developed by ZigBee Alliance, is used in wireless sensor 

networks which have low power requirements in plenty of applications, 

such as: factory automation systems, home security systems, consumer 

electronics, health care [6]. The idea is to provide low power wireless 

connectivity and replacement of cable installations. To meet the varied, 

depending on application requirements, ZigBee introduces profiles of the 

wireless system.
RF4CE Radio Frequency for Consumer Electronics (amalgamated with the ZigBee 

alliance) enables design of remote control devices using RF instead of 

traditional infra-red technology. It improves the communication with 

consumer electronics because of bidirectional transmission and better 

signal propagation properties.

6LoWPAN IPv6 over Low power Wireless Personal Area Network. The idea is to 

apply the internet protocol event to the small, low power devices. 
Wireless HART Provides a wireless protocol for the process measurement, control, and 

asset management applications. It is based on industrial HART 

communication standard. It provides a self-organizing, and a self-healing 

mesh network.
ISA100.11a This standard is deployed by ISA and is an open-standard intended to be 

used in industrial automation.
MiWi Developed by Microchip P2P and designed for use in low data-rates, short 

distance low cost network. It is intended to be used in applications such as 

building automation, industrial monitoring and control, remote control and 

meter reading.

Table 2.2. 802.15.4 based higher layer protocols [4].

2.2.4. Device classes.
The IEEE 802.15.4 standard introduces two classes of devices operating in a wireless 

network – Full Function Device (FFD) and Reduced Function Device (RFD).

Full Function device can work in any topology, like star, tree or mesh. In most cases 

such device has to be powered all the time, and can not go into sleep mode. Therefore a 
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battery power supply is not recommended. FFD can talk to any other device and implements 

complete protocol set. Each FFD may work as a PAN coordinator, but only one coordinator 

can operate per one PAN network. The coordinator performs the same functions as a router, 

but also manages the network formation, device authorization etc.

The  second  class  of  IEEE  802.15.4  device  is  a  RFD.  A RFD  has  got  reduced 

functionality and can only talk to FFDs, so it always acts as end device such as, sensor or 

actuator.  Its  use  is  limited  to  star  topology or  it  can  act  as  end-device  in  a  peer-to-peer 

network.  RFD  cannot  become  a  PAN  coordinator  and  has  got  reduced  protocol  set,  for 

example it does not route packets. Typically such node is in a sleep mode most of the time and 

wakes up periodically performing network tasks. Because of that, it usually consumes much 

less power then a FFD and can be battery powered. 

2.2.5. Physical layer
PHY layer provides two services:

• PHY data service, which enables the transmission and reception of PHY protocol data 

units (PPDUs) across the radio channel.

• PHY management service.

The IEEE 802.15.4 systems operate in unlicensed radio bands. Some commonly used 

bands and corresponding transmission methods are presented in the table 2.3.

PHY Frequency 

band [MHz]

Available 

channels

Bit rate 

(kbps)

Symbol rate (kbaud) Modulation

868/915 868 – 868.6 1 20 20 BPSK
902 – 928 10 40 40 BPSK

868/915

(optional)

868 – 868.6 1 250 12,5 ASK
902 – 928 10 250 50 ASK

868/915

(optional)

868 – 868.6 1 100 25 O-QPSK
902 – 928 10 250 62,5 O-QPSK

2450 2400– 2483,5 16 250 62.5 O-QPSK
 Table 2.3. IEEE 802.15.4 frequency bands.

Direct Sequence Spread Spectrum technique is used making the transmission more 

resistant to interference from undesired narrow-band signals.

The PHY is responsible for the following tasks:

• activation and deactivation of the radio transceiver,

• energy detection (ED) within the current channel,
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• link  quality  indicator  (LQI)  for  received  packets,   that  provides  information  for 

application about quality of wireless link,

• clear  channel  assessment  (CCA)  for  carrier  sense  multiple  access  with  collision 

avoidance (CSMA-CA),

• channel frequency selection,

• data transmission and reception.

It's worth to note that energy detection (ED) is used not only to select the best channel during 

network initialization, but also it provides possibility to adapt to a changing RF environment 

by selecting  another  channel  if  a  link  quality  in  the  current  one  is  causing  transmission 

problems.

2.2.6. MAC layer and frame formats.

2.2.6.1. General description.

The MAC layer is responsible for 

• data reception and transmission scheduling,

• data validity/integrity checking,

• acknowledgment of frame delivery,

• node addressing,

• time synchronization,

• association and disassociation of nodes,

• CSMA/CA multiple access,

• handling of so called guaranteed time slots (GTMs).

The IEEE 802.15.4 MAC layer provides interface for higher layer by defining two 

types of services: MAC data service and MAC management service. It also provides hooks 

that can be used by security mechanisms [5].

MAC data service enables the transmission and reception of MAC Protocol Data Units 

(MPDUs)  across  the  PHY data  service  [5].  The  name of  the  interface  to  higher  layer  is 

MLDE-SAP.

MAC management service is responsible for invoking the layer management function 

and it maintains a database of managed object associated with the MAC sublayer.

2.2.6.2. MAC frame formats.

There  are  four  types  of  frames:  beacon,  command,  data  and acknowledgment.  All 

frame types are based on a general MAC frame format, that is presented in the Figure 2.5. 
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This figure shows also how physical message transmitted through the radio channel looks 

like. Preamble and start of packet field allows a receiver to synchronize to a message. MAC 

Protocol Data Unit is divided into MAC header (MHR), MAC Service Data Unit (MSDU) 

and MAC footer (MFR).

MAC  header  contains  three  fields:  frame  control,  sequence  number  and  address 

information. Frame control field contains the information about a frame type, addressing field 

properties, and other specific for each network operation mode. It also indicates if the packet 

data is encrypted due to security reasons. Sequence number field is  used for sending one 

acknowledgment per many frames being transmitted through a radio channel. It improves the 

effective application data throughput. Addressing field contains destination PAN identifier, 

destination address, source PAN identifier and source address. Frame payload has variable 

length and includes information specific for each frame type. FCS field with 16 bit ITU-T 

CRC is used to check data integrity and is calculated from MHR and MSDU fields.

Figure 2.5. General MAC frame format.

Detailed description on possible MAC frames is presented in Appendix A.

2.2.6.3. Beacon and non-beacon networks.

There are two possible modes of network operation: using so called beacon frames or 

not. Example of beacon-enabled communication is presented in the Figure 2.6.
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Figure 2.6. Example of beacon-enabled communication.

It has got so-called superframe structure in which network coordinator transmits beacons at 

predetermined  time  intervals.  Superframe  is  divided  into  two  characteristic  periods  with 

different channel access methods implemented. 

During the contention access period slotted CSMA/CA channel access mechanism is 

used, and a device, which has data to be send, waits for the boundary of the next backoff slot, 

after random number of backoff slots period. If no energy is being detected the channel is 

regarded to be free, and device's message is being transmitted. If channel is found to be busy, 

device continues to wait random backoff slot number. 

During the contention free period each device which requires constant bandwidth has 

got guaranteed time slot in which only this device can transmit it's messages.

Non-beacon transmission does not divide time into contention access and contention 

free period. Because there is not transmission synchronization frame, the contention access, 

based on CSMA/CA channel access mechanism is all the time.

2.2.6.4. Transactions in a beacon enabled networks.

Figures 2.7 and 2.8 demonstrate communication from a ZigBee device (Router or End 

-Device) to a coordinator and from a coordinator to a device.
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Figure 2.7. Sequence diagram of the transmission between a coordinator and a network device in a beacon-

enabled network. Network device has data for the coordinator.

Figure 2.8. Sequence diagram of the transmission between a coordinator and a network device in a beacon-

enabled network. The coordinator has data for a network device.

If a network device has data ready to send to the coordinator, at first it has to listen for 

the network beacon. Then device synchronizes itself to the superframe structure and by using 

slotted  CSMA/CA  mechanism  it  transmits  data  frame  to  the  coordinator.  After  that 

coordinator can transmit an acknowledgment frame  .

If the coordinator has got a pending message, then it indicates that fact in the network 

beacon frame. When the device, to which the coordinator wishes to send a packet, recognizes 

its address in the pending address field, it  transmits a MAC command requesting the data 

using  slotted  CSMA/CA  mechanism  [7].  After  receiving  acknowledgment,  coordinator 

transfers the requested data, and after reception of that data another acknowledgment is send 

by the network device [5]. 

Beacon  enabled  mode  of  transmission  lowers  the  level  of  power  consumed  by a 
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coordinator, because it does not have to be active all the time, but only during superframe 

duration period. In the time between the end of superframe and the beginning of the next 

beacon frame the device can be switched into low power mode. Furthermore beacon-enabled 

mode can provide higher channel usage than non-beacon network, by utilizing slotted CSMA/

CA mechanism.

2.2.6.5. Transactions in a non-beacon networks.

Another  channel  access  method  that  does  not  use  beacon  frame  is  unslotted 

CSMA/CA. In this method before network device sends it's frame, it has to wait for a random 

period. If channel is free, the device transmits data, otherwise random wait period is generated 

before next attempt. Transmission is acknowledged by ACK frames, which are send without 

using  the  CSMA/CA mechanism.  An  example  of  this  type  of  channel  access  method  is 

presented in Figures 2.9 and 2.10.

Figure 2.9. Sequence diagram of the transmission between a coordinator and a network device in a non-beacon  

network. Network device has data for the coordinator.

Figure 2.10. Sequence diagram of the transmission between a coordinator and a network device in a non-beacon 

network. The coordinator has data on request for a network device.
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In Figure 2.9 a network device has data for a coordinator, and it simply sends it using 

CSMA/CA  mechanism  described  above.  Coordinator  can  acknowledge  the  successful 

reception of the packet. Figure 2.10 presents situation in which coordinator has pending data 

for the network device. At first the network device has to check if data is ready using polling 

mechanism. It is done by sending data request frame. If data is pending, the data frame is 

transmitted, else the coordinator transmits a data frame with a zero-length payload.
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2.3. Analysis of the ZigBee Standard.

2.3.1. General description.
ZigBee is a IEEE 802.15.4 based protocol for wireless sensor network applications. 

Typical WSN network requires low power consumption of the node, which provides longer 

battery life. Moreover low cost, small footprint and other features like mesh networking, that 

allows  communication  between  many devices  in  wide  networks  are  required.   All  these 

features are characteristic for ZigBee technology. 

ZigBee defines network and application layers on the top of the IEEE 802.15.4 MAC 

and  PHY  layers.  ZigBee  network  is  self-configuring,  self-healing  and  provides 

interoperability between devices from different manufacturers, even if each of node performs 

different functions. ZigBee provides security mechanisms including node  authorization, 128-

bit AES data encoding with various key distribution options All this combined with flexibility 

and extendability make ZigBee good solution for WSN networks.

ZigBee  standard   is  developed  by the  ZigBee Alliance,  which  is  open,  non-profit 

association of several hundred companies. Before the product can carry the ZigBee Alliance 

logo,  the  ZigBee  Certification  program  has  to  be  successfully  completed.  This  ensures 

interoperatibility and proper  coexistence between certified ZigBee devices.  There are  two 

types of ZigBee certified testing programs [8]:

• ZigBee Compliant Platform (ZCP) – for modules that are intended to be used as a part 

of end products. For example CC2530-ZNP provided by Texas Instruments along with 

software framework, which is used in devices described in Chapters 3 and 4, is a ZCP.

• ZigBee Certified Product – the certificate is for products that are built upon a ZigBee 

Compliant Platform, and they have to pass the test, if they are to be sold with ZigBee 

logo.

2.3.2. ZigBee application profiles.
In addition ZigBee Alliance defines  several  application profiles,  suited for  various 

purposes, in ex.:

• Smart Energy profile – intended for devices  that provide information about energy 

usage, for example power meters.

• Home  automation  profile  –  suited  for  devices  that  control  home  appliances,  for 

example  remote  control  of  heating,  ventilation  and  air  conditioning  (HVAC) 

appliances as well as for home entertainment.

• Building Automation profile – allows integration of almost every system in a building 
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such as heating, lighting management and security.

• Light Link – suitable for light sources and light controllers

Other profiles are currently not made public:

• Remote Control profile,

• Health Care profile,

• Input Device profile,

• Retail Services profile,

• Telecom Services profile,

• 3D Sync profile.

Furthermore additional private profiles suited for specific applications can be defined by a 

ZigBee devices developers. The list of possible profiles is still open, and other public profiles 

may be provided by the ZigBee Alliance in the future.

2.3.3 ZigBee stack architecture.
ZigBee Stack Architecture is illustrated in Figure 2.11. Each main part of the stack is 

described in the next three subsections.

Figure 2.11. Outline of the ZigBee Stack Architecture [9].

2.3.3.1. Network (NWK) layer of the ZigBee stack architecture.

Network layer controls IEEE 802.15.4 MAC sub-layer and provides an interface to the 

application layer. To accomplish this, two service entities are used. The first one – NWK layer 
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data entity (NLDE) provides the data transmission service via the NLDE-SAP. The NWK 

layer management entity (NLME) is used to manage services via the NLME-SAP [9].

Network layer is responsible for the following functions:

• joining and leaving the network by ZigBee devices,

• providing cryptographic security for transmitted frames,

• routing frames to their destination,

• discovering and maintain route tables,

• discovering one-hop neighbors,

• storing of important information about neighbor devices.

Three types of devices are used in the network: a coordinator, router and end-device. A 

coordinator is responsible for starting a network and assigning addresses to newly associated 

devices. Router routes frames and is likely to be  constantly powered on, in contrast to end-

devices.  Coordinator  and  router  are  Full  Function  Devices  (FFD)  and  end-devices  are 

Reduced Function Devices (RFD) as described in IEEE 802.15.4 standard.

ZigBee supports three topologies:

• star – in which network is controlled by a single device (coordinator) to which all 

other devices are directly connected,

• tree  –  which  may employ beacon oriented  communication  because  of  hierarchical 

structure,

• mesh  –  which  allows  peer-to-peer  communication  and  makes  the  network  more 

resistant to network failures, by giving possibility of creating alternative paths.

General NWK Frame Format is presented in Figure 2.12.

Figure 2.12. General NWK Frame Format.
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NWK frame fills NWK frame payload and consists of the following fields:

• Frame Control  – it  determines the type of frame – data  and command frames are 

supported and are presented in Figures 2.13 and 2.14. There are also sub-fields for 

discovery operations, indicating that security is used or the frame is a multicast or not. 

The rest of sub-fields ares used to include or not long IEEE address into the frame. 

• Destination short network address.

• Source short network address.

• Radius  –  which  specifies  the  range  of  a  transmission,  measured  as  the  maximum 

number  of  hopes  from the  source  to  the  destination.  Each  receiving  device  shall 

decrement this field by 1.

• Sequence number -  which is incremented each time the NWK layer constructs a new 

NWK frame. This field is used to provide safety and to determine the order of the 

packets in a receiver node.

• Destination long (8-octet length) IEEE address.

• Source long IEEE address.

• Multicast control.

• Source Route subframe.

• Frame payload for higher layer data.

Figure 2.13. NWK Data Frame Format.

Figure 2.14. NWK Command Frame Format.

28



2.3.3.2 Application layer of the ZigBee stack architecture.

Application layer consists of Application Framework, ZigBee Device Object (ZDO) 

and Application Support Sublayer (APS).

Application  Framework  (AF)  provides  the  functions,  data  types  and  data-frame 

formats  for  transporting  data  to  facilitate  the  profile  building  process.  It  carries  the 

environment in which application objects are built into ZigBee device. Application Object is 

responsible for initiation of standard network functions as well as controlling and managing 

of  the  protocol  layers.  AF  communicates  with  APS  via  APSDE-SAP,  which  includes 

primitives for data transfer such as: request, response, indication and confirmation. Transfer is 

carried out between peer app object entities. Up to 240 distinct Application Objects could be 

defined. There are also two special endpoints: to interface data to the ZDO, and to interface 

data function to broadcast data to all app objects [8].

Zigbee Device Object (ZDO) is responsible for:

• establishing a secure high-level connection between ZigBee devices,

• discovering devices and their services in the network,

• determining whether the device is coordinator, end device or router,

• initiating a binding requests or replying to them,

• providing the interface to the lower portions of the ZigBee protocol stack via End 

Point 0 (EP0) [9].

Finally the APS sublayer provides:

• messages forwarding between bound devices,

• removal and filtering of messages, 

• reliable data transport,

• mapping 64 bit IEEE addresses to 16 bit NWK addresses,

• maintaining tables for binding.

APS layer defines three types of frames: data frame, command frame and acknowledgment 

frame (figures 2.16, 2.17 and 2.18). The general APS Frame Format is illustrated in the Figure 

2.15. Frame Control carries out information about frame type, delivery mode (normal unicast, 

indirect addressing, broadcast, group addressing), and other properties of the transmission. At 

this layer transmission occurs between endpoints. There are up to 240 application endpoints 

and one special endpoint for ZDO (EP 0) [9].
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Figure 2.15. General APS Frame Format.

Figure 2.16. APS layer data-frame format

Figure 2.17. APS layer command frame format

Figure 2.18. APS layer acknowledge frame format.
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During design process of a ZigBee device the application profile has to be selected. An 

application profile defines device descriptions, application-level interfaces, message formats 

and  standard  practices  for  a  given  application  type.  This  allows  to  create  interoperable, 

distributed applications. Devices within an application profile communicate with each other 

by the means of clusters. A cluster is a related collection of commands and attributes, which 

together define an interface to specific functionality [10].  For example the “on/off” cluster 

and  “alarms”  cluster  can  be  used  to  communicate  a  door  lock  with  an  alarm in a  home 

automation  profile  compatible  system.  Some clusters  are  standardized  and defined  in  the 

ZigBee Cluster Library (ZCL) which enables clusters re-usage across many profiles. 

2.3.3.3 ZDO Management Plane of the ZigBee stack architecture.

ZDO  Management  Plane  is  used  by  APS  and  NWK  layers  in  the  process  of 

communication  with  the  ZDO[8].  APSME-SAP  makes  an  interface  between  ZDO 

Management Plane and APS that is used for transport of management commands to:

• unbind or bind two devices together, by creating an entity in the binding table,

• communicate with AIB (APS Information Base),

• add and remove groups to endpoints.

NLME-SAP  is an interface for NWK layer and is used to network discovery, access and 

formation [9].

2.3.4. Security of a ZigBee network.
Because data physically transmitted over a radio channel can be easily captured and 

recognized by a 802.15.4 compatible sniffer, security mechanisms are needed.  In ZigBee 

unauthorized access is prevented by the following features and functions provided by this 

protocol [11] :

• AES -  based Encryption with  128 bit  key length  provides  both data  integrity and 

security. Data integrity ensures that they have not been changed, removed or added by 

unauthorized  node [12].  Data  security  prevents  to  view sent  information  by using 

ZigBee sniffer. It is achieved by encrypting the data payload field. ZDO initializes 

Security Service Provider (SSP) which is used by NWK and APS layers.

• Message Timeout – frame counter in the message frame is  incremented after  each 

transfer, which counteracts so called replay attacks. Even if some encrypted message 

has been sniffed, it cannot be re-used later.

• Access Control List -  which contains MAC addresses of nodes which could be in the 

PAN network.
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• Accept or Reject Join Request – additional security mechanism could be implemented. 

Because in most cases user decides if he want to add a new node to the PAN, there 

could be the hardware accept button which enables it – for example in the coordinator 

node or remote PAN management center.

2.4. 802.3: Ethernet Standard overview
Ethernet is one of the LAN technologies, intended for a high-speed communication 

over a small  geographic area [13].  Ethernet  is  covered by the IEEE 802.3 standard.  This 

standard describes the two lowest layers of the OSI reference model: Data link and Physical 

layer.

Data link layer is further divided into two sublayers: MAC-client and MAC. Without 

going into much detail,  the Ethernet  MAC sublayer  is  responsible for data encapsulation, 

initiation of frame transmission and detecting failures. During reception, frames are parsed 

and errors are detected. MAC Ethernet frame format is illustrated in Figure 2.19. It consists of 

the following fields:

• SFD – Start-of-Frame Delimiter.

• DA – Destination Address, hardware MAC address of the target station. Should be 

unique worldwide.

• SA – Source Address, hardware MAC address of the station sending frame.

• DFL – Data Field Length, the number of octets carried by the DF field.

• DF – Data Field, carries information from LLC sublayer.

• PAD – Padding, additional octets which are used, if the DF field has not minimal 

number of octets.

• FCS – Frame Check Sequence, used to detect errors in the receiver, calculated without 

Preamble and SFD fields.

Figure 2.19. Ethernet MAC frame format.

Physical layer is divided into Physical medium independent layer with MII interface, 

and Physical  medium dependent layers with MDI interface.  Physical medium independent 

layer  is  often  integrated  as  a  microcontroller  peripheral.  For  example  the  STM32F4 
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microcontroller used in the project has the Ethernet peripheral with MII interface. Physical 

medium  dependent  layer  is  usually  realized  in  a  separate  chip  called:  physical  layer 

transceiver, and allows the system with MII interface to work over different kinds of cables 

such as twisted-pair and optical fiber.

Ethernet uses carrier sense multiple access with collision detection (CSMA/CD). A 

station can detect if there is a transmission in the channel, and sends its frames only when 

there is no traffic. Collision between frames from many sources can occur only during the 

beginning of transmission due to the propagation delay over the cable. Pure CSMA leads to 

waste of time, because after collision frames from many stations interfere with each other 

throughout their duration. Collision detection mechanism shortens collision period and allows 

faster return to the collision-free transmission.

There are many Ethernet versions available and their general naming standard is as 

follows:

Xbase-Y, where:

X – maximum data rate in Mbps,

Y – physical medium abbreviation.

For example:

• 10Base-T: offers 10 Mbps and uses twisted-pair cable,

• 100Base-T (Fast Ethernet): offers 100 Mbps, also using twisted-pair cable,

• 1000Base-SX (Gigabit Ethernet): provides 1Gbps over the Multi-mode fiber.

2.5. Smart grid concepts.
A smart grid is an emerging concept of a next-generation power grid network, which 

integrates information, telecommunication and power technologies to deliver energy in the 

optimal way from many sources to many destinations. The main goal of a smart grid is to 

improve reliability of the energy network by providing alternative routes after grid fail, and 

efficiency  due  to  distributed  generation  and  energy  management  systems.  Distributed 

generation  means  that  many  small  sources  generate  electricity  and  they  are  situated  in 

residential and industrial areas. In such grid renewable energy sources, such as photovoltaic 

panels and wind turbines are connected to the existing network. Distribution algorithms find 

the most efficient way to reduce the transmission losses.

The very important aspect of a smart grid is interaction with energy consumer, who 

can monitor dynamically changing prices of electricity during the day and postpone some less 

important energy consuming activities to time when prices are lower. This leads to lower bills 
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and to compensation for the day energy demand curve. Excessive overproduced energy can be 

stored in batteries of electrical vehicles and gave back at the time of increased power demand.

To allow these features smart metering has to be applied. Smart meter recognizes and 

details  electrical  consumption  and,  for  example,  relays  information  to  central  monitoring 

station [14]. Wireless sensor networks such as ZigBee, are ideal for that purpose. The ZigBee 

Alliance is currently pushing their technology to  become a standard solution both for smart 

metering, home and building automation systems. Thanks to constant grid monitoring as well 

as smart sensors placed along power lines and substations, when damage occurs, the problem 

is automatically reported, the damaged grid segment is isolated and distribution system may 

automatically re-route grid topology.  The place of fail  can be precisely identified and the 

relevant departments are informed about the problem to solve it as soon as possible. This 

feature is often called self-healing. 

To fully deploy the smart grid idea, every component of the grid has to be prepared: 

power generators, distribution and transmission power lines, substations, and consumers. New 

applications emerge especially in substations, which are used to transform voltage (from high 

to low or low to high level) and often integrate grid fault protection and switching functions. 

There  are  international  initiatives  that  focus  on  substation  automation  like  the  KIC-

ActiveSubStations project [15].

The  EU's  “Third  Energy Package”  includes  Electricity  and  Gas  Directives  which 

requires the EU Member States to ensure the implementation of intelligent metering systems. 

Smart metering should be fully deployed by 2022, and by 2020 80% energy consumers have 

to be equipped with smart meters [16].

2.6. IEC 61850 standard overview.

2.6.1. Basic concepts of IEC 61850 and standard documents description.
Global demand for electricity is constantly increasing. According to Frost & Sullivan 

research,  the  average  annual  growth  rate  in  power  generation  is  2.7% to  the  2020 [17]. 

Nowadays significant funds are invested into electrical industry to improve performance of 

power generation and distribution, reduce production costs, and increase reliability and safety 

of electric grid systems. Substation automation, which is in scope of IEC 61850 standard, is 

one of the aspects under consideration.

The  main  goal  of  the  IEC  61850  standard  is  to  provide  interoperability  between 

Intelligent Electronic Devices (IEDs) that are main building blocks of substation automation 

systems.   Interoperability  enables  easier  configuration,  higher  reliability,  lower  costs  and 

safety. 
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IEC  61850  defines  object  oriented  approach  to  device  building  and  to  their 

interoperation in a network. It defines abstract communication models that are independent 

from particular  hardware platform and communication interfaces,  that  makes the standard 

resistant to future changes in communication protocols. It allows to use the standard with any 

transmission  media,  that  meet  the  basic  protocol  requirements.  The  whole  substation 

automation system and each device in the IEC 61850 network is described in a standardized 

way using Substation Configuration Language (SCL),  which is  described in  IEC 61850-6 

document [18].

IEC  61850  allows  for  interoperation  between  IEDs  produced  by  different 

manufacturers. An IEDs should:

• provide possibility to connect to a common bus, using common interface,

• understand information posted by another IEDs,

• if required, work together on one task without disturbing each other.

Moreover interoperability in every configuration requires [19]:

• that communication allows any device to perform any function, but this does not mean 

that any device must serve any function, 

• that  Substation  Automation  System  (SAS)  functions  and  their  behavior  during 

communication should be described independently of a device,

• no redundancy in function description,

• openness to the future innovations.

2.6.2. Data and communication models.
IEC 61850 models the functions performed by real  devices  in  SAS. The common 

information and functions available in the physical devices are described in the standard using 

the modeling approach. Figure 2.20 illustrates a real device, which is modeled as a logical 

device containing logical nodes (LN). In this example the logical device is the bay unit, and it 

contains multiple logical nodes, which are virtual representations of the concrete functions the 

bay unit performs. For example a circuit breaker is virtually represented by the XCBR class of 

a LN.  Each logical node contains a list of data with dedicated data attributes [20], for instance 

XCBR class has data defining its position (on/off) using a boolean value. 

An IEC 61850 device model is described by a configuration file written in the SCL 

language described in the reference [18]. It contains definitions of logical devices, logical 

nodes and information exchange settings. To provide interoperability each device, even from 

different  manufacturers  has  to  be  defined  by  using  the  same  semantic,  for  this  reason 

standardized configuration language had to be defined.
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Figure 2.20. The modeling approach in the IEC61850. The Figure comes from [20].

The hierarchy in the data model is illustrated in Figure 2.21. Substation Automation 

System  consists  of  physical  devices  (IEDs)  connected  to  the  transmission  medium,  for 

example Ethernet cable. Each of them contains unique IP address, and works as a server. IEDs 

are collections of logical devices, which further divide into logical nodes. Possible logical 

node classes are defined by the standard.

Figure 2.21. Hierarchy of the data model defined in the IEC 61850 standard.
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The objects are referenced by their position in the hierarchy in the following way:

LD / LN $ DO,

for example: 

BayUnit_2 / XCBR_1 $ Pos,

refers to a position (Pos) of the circuit breaker 1 (XCBR_1), which is localized in the Bay 

Unit 2 (BayUnit_2).  

Apart  from  the  data  model  IEC  61850  defines  the  information  and  information 

exchange models, which are described in the part 7-2 of the standard [21]: “Basic information 

and  communication  structure  –  Abstract  communication  service  interface  (ACSI)”.  ACSI 

defines the abstract interface between a client and a remote server. It also describes fast event 

distribution method using publisher/subscriber mechanism. These interfaces are used for:

• real-time data exchange,

• file transfer,

• discovery of data types,

• group control,

• reporting the events,

• remote device control.

The ASCI information and information exchange models correspond with the Common data 

classes described in the part 7-3 [22] and 7-4 [23].

The information modeling classes are as follows:

• Server – is the container of other ACSI models. Represents the behavior of a device, 

which  is  seen  by external  systems.  Server  can  communicate  with  the  client  using 

client/server  mechanism  and  send  real-time  information  to  peer  devices,  such  as 

Sampled Values and GOOSE.

• Logical device (LD) – represents a group of functions with their  input and output 

information,

• Logical node (LN) – represents the information produced and consumed by a single 

function of a logical device,

• Data objects – provide parameters to describe a specific function, such as time stamp, 

analogue value etc.
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Each information model is defined as a class.

Information exchange model describes service models, in addition to Logical Node 

and Data classes  [21]:

• Data Set – groups data objects and their attributes from different logical nodes. This 

group can be directly accessed as a whole, and could be send using sampled values, 

GOOSE messages, reports and logs.

• Substitution – this model allows to replace a process value by another, for example 

more precise value.

• Setting group control – describes the switching from one set of logical node settings to 

another one.

• Report control and logging – allows to generate reports and logs from the specified 

data-sets. An ICD file (in the Report Control Blocks) describes parameters for this 

model such as: trigger options (on data change, update, integrity poll, quality change), 

time stamp, sequence number and information about reasons for report  generation. 

Moreover reports can be sent in specified time interval.

• Control  blocks  for  generic  substation  event  (GSE)  –  defines  the  fast  and  reliable 

distribution of the input and output data values to the physical peer devices.

• Control blocks for transmission of sampled values – which are periodically transferred 

samples that have to be quickly delivered.

• Control – describes services to control devices in the SAS.

• Time and time synchronization.

• File  system  –  definition  of  file  management  and  transmission  using  client/server 

mechanism.

• Tracking  –  provides  the  interface  to  track  control,  configuration  and  exchange 

services. It is used for diagnosis the system.

Each model has different requirements for a transmission method (client-server or publisher-

subscriber), delivery time and length of data, so they are mapped to different communication 

protocols described in the next subsection.

2.6.3. Real Protocols and IEC 61850.
IEC  61850  communication  services  are  mapped  into  different  communication 

protocols depending on their  requirements.  Two of the requirement parameters,  which are 

used further are: transmission and generation time, which are illustrated in Figure 2.22.
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Figure 2.22. Illustration of transmission and generation time in IEC61850-5 [19]

In the part 5 of the standard [19] the seven types of messages are defined:

• Type 1 – fast messages which contain simple binary code or command such as: “turn 

on”, “turn off”, “close”, “start”, “stop” etc.

• Type 2 – medium speed messages, for which generation time is important, but the 

transmission time is less demanding.

• Type 3 – low speed messages which demand time stamps.

• Type 4 – raw data messages containing values from analog-to-digital converters and 

digital converters, which are generated by different IEDs.

• Type 5 – File transfer messages, to transfer big files divided into smaller pieces.

• Type 6 – Time synchronization messages used to synchronize internal IEDs clocks in 

the SAS.

• Type 7 – Command messages with access control used to transfer control commands, 

which requires high level of safety and data integrity.

Each type of message has different requirements on delivery time. Table 2.4 presents these 

requirements [19] :
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Type of message Time requirements – transmission time
P1 P2 / P3

1A fast messages (off command) <10 ms <3 ms
1B Fast messages (others) <100 ms <20 ms
2 medium speed messages <100 ms <100 ms
3 low speed messages <500 ms <500 ms
4 raw data messages <10 ms <3 ms
5 File transfer messages Not critical (typically > 1000 ms)
7A Command messages with access 

control

<500 ms <500 ms

7B Command messages with access 

control (for special tasks)

<10 ms <3 ms

Time requirements – accuracy
6A Time synchronization messages 

(control and protection)

Accuracy:
±1 ms ±0.1 ms

6B Time synchronization messages 

(measurements)

Accuracy:
±25 μs

Accuracy:
±4 μs / ±1 μs

Table 2.4. Time requirements for different types of the message [19].

The standard defines so called performance classes P1,P2, P3. Performance class P1 concerns 

distribution bay, P2 concerns transmission bay unless the client wants otherwise and P3 

concerns transmission bay with elevated synchronization requirements.

Figure 2.23  illustrates communication stacks used by different types of IEC 61850 

messages. GOOSE and SV messages are time-critical – to meet the requirements of a type 4 

and 1, they have to be mapped directly to the low-level Ethernet layer. In this case frames can 

be shorter, and prepared more quickly [24]. The messages of type 2, 3 and 5 are mapped to 

MMS protocol based on TCP/IP protocol. The Time synchronization messages are sent using 

SNTP protocol based on UDP/IP protocol.
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Figure 2.23. Communication stacks used by the IEC 61850 standard [24] .

2.6.4. Substation Configuration Language.
Part 6 of the IEC 61850 standard introduces file format for describing configuration, 

parameters,  function  and  relations  between  IEDs,  and  for  communication  system 

configuration  [18].  The  language  used  in  this  file  format  is  XML-based  Substation 

Configuration Language (SCL). IEC 61850 defines six types of SCL files - they are shown in 

table 2.5.

Name Extension Description
System Specification 
Description

.SSD It describes the functions of the SAS and required types 
of the LNs, but without specific IED description.

IED Capability 
Description

.ICD It describes the functional capabilities of one IED type, 
so it should have only one IED section.

System Exchange 
Description

.SED Description of the interface for another project to use the 
specified project.

Instantiated IED 
Description

.IID Description for a single IED tailored to the specific 
project. Includes project specific name, addresses and 
data model. It can be used for example for IEDs which 
have number of LN instances dependent on the project 
settings.

System Configuration 
Description

.SCD It describes which IEDs are used in the project, data 
flow between them and required DataTypes Templates.

Configured IED 
Description

.CID Description of the communication part of an instantiated 
IED. It contains only the information about IED which 
IED configurator should know.

Table 2.5. Description of different types of SCL files.
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The SCL file is divided into five sections:

• Header  –  identification  of  SCL configuration  file,  information  about  version,  and 

options for the mapping of names to signals [18].

• Substation description – description of a functional structure of a substation.

• IED description – configuration of an IED, logical devices, logical nodes and their 

data objects descriptions.

• Communication system description – describes which IED access points are connected 

to a network.

• Data type templates – used to define instantiable logical node types.

2.6.5. Substation Model.
The IEC 61850 standard relates to a Substation Automation System (SAS).  Substation 

Automation  (SA)  is  a  system  that  remotely  monitors,  controls  and  coordinates  energy 

distribution  components  installed  in  a  substation  [25].  Main  functions  of  SA are  switch 

control, data monitoring and protection. These functions are broken by IEC 61850 into sub-

functions which are associated with logical nodes. Each IED can perform one or many sub-

functions,  so  each  IED  is  a  collection  of  logical  nodes  [25].  There  are  currently  other 

protocols that  can be used for substation automation,  for example Modbus,  Modbus Plus, 

DNP 3.0, IEC 60970, but they do not support interoperability among IEDs to such extent as 

IEC 61850. 

An example of such SAS is presented in Figure 2.24. It shows an architecture with 

three levels: process, bay and station. Station bus is used to communicate between the station 

and the bay level as well as to communicate between equipment at the same level. Station 

level devices are for example station computer with HMI (Human Machine Interface) used as 

the interface to the operator and the station gateway to connect to, for example a network 

communication center  [26].  Bay level  equipment  consists  of protection and control  IEDs, 

used to  collect data from the process level equipment and to control its behavior.
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Figure 2.24. Example of a Substation Automation structure [26].

Process level equipment consists of merging unit IED (MU), breaker IED and switch IED. 

They serve as remote input / outputs, sensors and actuators [25]. Between the bay and the 

process level equipment there are process buses, which have higher real time requirements 

than station bus.
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3. DESIGN OF A ZIGBEE-TO-ETHERNET BRIDGE.

3.1. Purpose of a ZigBee-to-Ethernet bridge.
The  purpose  of  a  ZigBee-to-Ethernet  bridge  is  to  connect  ZigBee  and  Ethernet 

(TCP/IP based) network, as shown in Fig. 3.1. 

Figure 3.1. Vision of the system, which consist of many ZigBee-to-Ethernet bridges managing many PANs.

Such device should provide an interface for user to view data from ZigBee PAN network. It is 

assumed that the ZigBee nodes are equipped with sensors and actuators, that interact with the 

environment.  The  bridge  should  act  as  a  data  server,  providing  data  from PAN network 

measurements as well as an interface to control the PAN nodes. This gives a possibility for 

example  to  store  collected  data  in  an  external  database  to  monitor  changes  of  measured 

values. 

A  ZigBee-to-Ethernet  bridge  can  meet  requirements  of  industrial  and  home 

applications, for example:

1. ZigBee nodes can be used to monitor environmental and industrial process parameters 

inside a factory or even be used for controlling these processes. The nodes may be 

grouped into separate PAN networks, each covering for example a single process hall, 

a  selected  group  of  machines  etc.  The  ZigBee-to-Ethernet  bridge  can  be  used  to 

integrate these networks to existing factory intranet, which is often an Ethernet based 

TCP/IP network. Due to security reasons this data is usually not available outside the 

factory intranet [27].

2. In case when the data provided by the ZigBee nodes is not confidential, the ZigBee-to-

Ethernet bridge can be used to connect PAN networks directly to the Internet.  For 

example a city network gathering data about air pollution can connect directly to a 
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database hosting server, allowing visualization of the measurements.

3. ZigBee also becomes a standard in home automation, providing tools for controlling 

light, heating, ventilation and air conditioning (HVAC) and other appliances. For the 

end user the Internet connectivity allows to control such system from remote location, 

which actually can be any place in the world.

3.2. Requirements.
The bridge works as a PAN coordinator, so it has to process and maintain more data 

than other ZigBee nodes in the network. Data from PAN, that is interesting for other systems , 

such as network addresses of the nodes, state of the nodes, measurement data etc. are to be 

visible via TCP/IP based network. Taking all  this into consideration,  requirements for the 

bridge can be formulated:

• it should work in the unlicensed frequency band at 2.4 GHz, because of higher bit rate 

and 16 channels instead of 1 channel at 868 MHz. Although the sensitivity at 2.4 GHz 

is lower than at 868 MHz, but the distances between devices in typical PAN network 

are the order of several to tens of meters. 868 MHz band has got restrictions associated 

with the channel busy time. If there is a distortion in this frequency band, no other can 

be selected and communication between nodes in not possible. At 2.4 GHz another 

channel can be selected providing more reliable connection. Even if all WiFi channels 

at 2,4 GHz are occupied, there are four safe IEEE 802.15.4 channels at 2.425, 2.450, 

2.475 and 2.480 GHz available. 

• Output power of the ZigBee transceiver should be at least 3 dBm, and sensitivity at 

least -85 dBm, and hence a minimal link budget should be equal or greater than 88 dB.

• Both the microcontroller and radio module should be low power. Current consumption 

of the ZigBee transceiver should be lower than 50 mA, even at TX mode.

• Microcontroller may operate under the control of a RTOS, and should have enough 

processing power and flash memory for TCP/IP and ZigBee stack components, Web 

Server, and task for communication with MySQL client on the remote server.

• Ease of use for components and software tools.

• Free software tools.

• Low bill of materials cost.

3.3. Proposed solution overview.

3.3.1. Design choices.
The simplest  way to provide web server,  and data base software support  is to use 

45



single board computer with, for example, embedded Linux operating system. It provides API 

for TCP/IP stack, embedded data base clients, and full web server support, providing high-

level API that allows to focus only on creating web page, instead of handling HTTP requests 

from  a  API  level.  However,  this  solution  has  two  drawbacks:  cost,  and  high  energy 

consumption. 

Taking  all  this  into  consideration,  STM32F4  microcontroller  and  CC2530  ZigBee 

transceiver are selected as main hardware components of the Bridge. They are discussed in 

the subsections 3.4.1 and 3.4.2.

3.3.2. Architecture of the system with a ZigBee-to-Ethernet bridge.
Figure  3.2.  shows  architecture  of  a  system in  which  a  ZigBee-to-Ethernet  bridge 

operates. This system may consist of multiple bridges connecting separate PAN networks, a 

web server, a MySQL database sever and a personal computer with the Internet access.

Each ZigBee-to-Ethernet bridge has its own IP address. Using web browser user can 

log into  every bridge  and change its  settings.  He can also see  measurement  results  from 

sensors within the PAN. There can be also possibility to control PAN devices using standard 

ZigBee Cluster Libraries.

In the system there is an web server with Java web application, which enables user to 

view and control all ZigBee PAN networks in which there is a ZigBee-to-Ethernet bridge. 

This web application has MySQL client functionality, and can store data from each sensor, 

from each PAN, into the database. This enables to see changes of measured values during long 

periods, and to have documented all events which user cares about.
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Figure 3.2. Architecture of the system, which consist of many ZigBee-to-Ethernet bridges managing many PANs.
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3.3.3. Building blocks of a ZigBee-to-Ethernet bridge.
Figure  3.3  shows  main  software  and  hardware  building  blocks  of  the  ZigBee-to-

Ethernet bridge, which are described in sections 3.4 and 3.5.

Figure 3.3. Block diagram of the hardware and software for a ZigBee-to-Ethernet bridge.
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3.4. Hardware design.

3.4.1. STM32F4 microcontroller description.
STM32F407VGT6  microcontroller  has  been  selected  as  a  main  controller  of  the 

bridge. It has got the latest ARM Cortex-M4 core with MPU, FPU, 1.25 DMIPS/MHz, 1 MB 

of Flash memory and 192 kB of SRAM memory[28]. It integrates low power capabilities, and 

powerful computing power in a single chip. Maximum core clock frequency is 168 MHz, 

which  gives  up  to  210  DMIPS.   Microcontroller  has  the  following  communication 

peripherals[29]:

• 10.5 Mbps USART,

• I2C,

• up to 37.5 Mbps SPI,

• CAN interface,

• SDIO interface,

• USB 2.0,

• 10/100 Ethernet MAC with dedicated DMA and MII/RMII interface.

Three of them are used in the project:

• SPI to communicate with the CC2530-ZNP module,

• USART  to  communicate  with  WSN  visualization  tool  provided  by  the  Texas 

Instruments company,

• Ethernet to connect to the Internet.

STM32F4 microcontroller integrates a 16-stream DMA controller, which can operate in three 

modes: 

• memory to memory, 

• memory to peripheral,

• peripheral to memory.

DMA is used in the bridge to offload the CPU from handling SPI transmission to and from 

CC2530-ZNP. For sending larger amount of data this method is better than using polling or 

interrupt-driven  transmission,  especially  because  the  selected  MCU has  only  1-byte  long 

hardware  SPI  buffers.  The  DMA transmission  is  used  also  while  sending  and  receiving 

Ethernet frames. 

STM32F4 microcontrollers contain so-called multi-AHB bus matrix. Several devices, 

such as Ethernet peripheral, DMA controller and the CPU act as bus masters, others such as 

FLASH and RAM memory controller  and  peripherals  act  as  bus  slaves  [28].  Because of 
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separate buses and 3 SRAM memories with separate ports  several high-speed peripherals can 

work simultaneously, and at the same time data processing can be performed by the CPU. 

Moreover it enables event driven architecture of the software in which CPU is in a low power 

mode most of the time, and is awaken by events from peripherals which carry out most time 

consuming processes of the program.

The  capabilities  offered  by  this  microcontroller  are  sufficient  to  implement  the 

expected functionality and the cost of a single chip is low. 

3.4.2. CC2530-ZNP solution for ZigBee networking.
CC2530-ZNP  is  a  low  power  ZigBee  system-on-chip  (SoC)  module  based  on 

CC2530F256 Texas Instruments device which runs a dedicated ZigBee stack. It contains an 

IEEE 802.15.4 compatible  radio  transceiver  and a  8051 microcontroller.  The module can 

interfaced  with  SPI,  UART or  USB  from an  application  processor.  Architecture  of  such 

system is presented in Figure 3.4.

Figure 3.4. Architecture of a system with an application processor and CC2530-ZNP [30].

CC2530F256 has 256-KB Flash memory, which is appropriate value for implementing 

full ZigBee PRO stack and application layer using ZigBee cluster libraries provided by the 

Texas Instruments. This module integrates peripherals listed bellow:

• Five-channel DMA,

• Operational amplifier and ultra low-power comparator,

• IEEE 802.15.4 MAC timer, general-purpose 16-bit and 8-bit timers,

• CSMA/CA Hardware Support,
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• RSSI and LQI indication,

• battery monitor,

• temperature sensor,

• 12-bit ADC, 

• two USARTS,

• 21 GPIO pins.

Very few external components are needed to make it work. Typical power consumption  in 

active transmission mode with 1 dBm output power and CPU in the idle state is 29 mA. A 

ZigBee device integrating this chip can be cheap, small and consuming very little energy.

Main radio features are as follows:

• programmable output power up to 4.5 dBm,

• frequency range: 2.394 to 2.507 GHz with 1 MHz steps and 5 MHz space between 

channels,

• baud rate: 250 kbps,

• maximum RX/TX and TX/RX switching time of 192 μs,

• receiver sensitivity (PER = 1%) is typically -97 dBm [31].

CC2530F256  hardware is appropriate for working as a part of the ZigBee-to-Ethernet 

bridge. To make it work as a ZigBee network processor, the ZStack-ZAP-MSP430 firmware 

must be downloaded from Texas Instruments ZigBee protocol stack website and installed in 

the CC2530 flash memory. This can be done by using either a  SmartRF05 Evaluation board 

or CC-debugger – both provided by the chip vendor.

After  uploading  firmware  CC2530-ZNP works  as  a  peripheral  processor  handling 

ZigBee communication. That solution offloads the main application microcontroller – in this 

case STM32F4. 

3.4.3. Schematic and Printed Circuit Board project.
Appendix D presents the electrical schematic of the ZigBee-to-Ethernet bridge.  The 

schematic and  the PCB have been designed using  CadSoft EAGLE PCB Design Software. 

The schematic is divided into three sheets:

• main controller & CC2530-ZNP,

• Ethernet PHY,

• power supply.
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3.4.3.1. STM32F4DISCOVERY hardware modifications.

The main application microcontroller is placed on a modified STM32F4DISCOVERY 

board, which is connected to the mother board through gold pin connectors. This is a cost 

effective solution and it integrates ST-link programmer and all components required to work, 

such as: crystal oscillator and linear voltage regulator. It allows for a fast prototype design.

However certain signals that needed outside of the module are already used by the on-

board componets. That's why some of the integrated circuits had to be unsoldered:

• LIS30DL – 3-axis accelerometer,

• CS43L22 – audio DAC with integrated speaker driver,

• MP45DT02 – MEMS audio sensor.

This made the MII interface available to connect to an external Ethernet PHY. 

3.4.3.2. Ethernet circuit description.

MII interface signals, made available after STM32F4DISCOVERY modification are 

listed and briefly described in the Table 3.1.

Name Direction Description
MDIO ↔ MII Data Input/Output

MDC → MII Data Clock

RxD0 - RxD3 ← Rx Data

Rx_DV ← Rx Data Valid

Rx_CLK ← Rx Clock

Rx_ER ← Rx Error

TxD0 - RxD3 → Tx Data

Tx_CLK ← Tx Clock

Tx_ERR → Tx Error

Tx_EN → Tx Enable

COL ← Collision

CRS ← Carrier Sense

Table 3.1. MII signals description [32].
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These pins are used to connect  DP83848CVV chip, which is a single port Ethernet physical 

layer  transceiver.  It  performs  all  the  functions  needed  to  receive  and  transmit  data  over 

twisted-pair cables. Some of the transceiver's features are [33]:

• supply voltage of 3.3V,

• typical power consumption < 270mW,

• auto-MDIX function (automatic selection of the appropriate MDI pair for reception 

and transmission),

• supports both 10BASE-T and 100BASE-TX Ethernet protocols,

• full MII and RMII interface support,

• small 48-pin LQFP package.

The block diagram of a system using DP83848CVV is illustrated in Figure 3.5. Generally 

three types of interfaces between microcontroller and a PHY transceiver can be used: MII, 

RMII, SNI. RMII requires less pins, but the needed clock frequency is two times higher than 

in MII case. SNI also needs less pins, but the highest possible bit-rate is 10 Mb/s. A ZigBee-

to-Ethernet bridge uses MII interface. 

Figure 3.5. Ethernet physical layer system diagram [33].

To provide  electrical  isolation,  which  protects  device  connected  to  the  Ethernet  network, 

coupling transformers are needed  between RJ-45 connector and DP83848 transceiver. In the 

design an integrated magnetic connector J011D21B is used, featuring a coupling transformer, 

RJ-45 connector,  and status LEDs, all  in a single  element.  The schematic  diagram of the 

coupling circuit of a J011D21B is presented in Figure 3.6.
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Figure 3.6. Coupling circuit of the  J011D21B integrated RJ-45 connector [34].

In the Ethernet PHY circuit impedance matching is provided by precision 49.9 Ω resistors. 

3.4.3.3. ZigBee transceiver circuit.

To facilitate the process of radio circuit  for CC2530-ZNP design, the ready to use 

CC2530EM daughter board module has been used. It integrates CC2530F256 chip, antenna 

matching circuit with SMA connector, power supply decoupling components and two 2x10 

pin, 50 mils raster connectors. The module is presented in Figure 3.7.

Figure 3.7. CC2530EM daughter board [35].

CC2530-ZNP is  connected  to  a  STM32F4  microcontroller  via  SPI  interface  with 

additional signals. SPI is a type of interface in which there is only one master and multiple 

slaves.  Slaves  can  talk  to  the  master  only if  he at  first  queries,  therefore  in  many cases 

additional  signals  are  added to  indicate  pending  data  in  slaves.  Figure  3.8  illustrates  the 
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interface between CC2530-ZNP and STM32 microcontroller.

Figure 3.8. Interface between CC2530-ZNP and STM32 microcontroller. 

Aside from standard SPI with MOSI, MISO, SCLK, CS signals, three additional lines are 

used: MRDY, SRDY and RESET. Additional signals allow to facilitate the higher layer SPI 

based protocol used to communicate with ZigBee module. 

3.4.3.4. Power supply circuit.

The last schematic from appendix D presents the power supply circuit. The bridge is 

powered from 7 to 35V DC power supply. A diode between power input and L7805 linear 

voltage regulator protects against reverse polarity. As an alternative the power can be supplied 

from the USB connector via an onboard ST-link programmer. Because 3.3V linear voltage 

regulator  integrated  with  STM32F4DISCOVERY board  does  not  offer  appropriate  output 

current, the LF33CDT is used to provide a 3.3 V for the Ethernet PHY circuit. The PCB is 

designed so that  MAX8860 can  alternatively be used  instead  of  LF33CDT to  power  the 

CC2530-ZNP transceiver circuit.

3.4.3.5. PCB layout of a ZigBee-to-Ethernet bridge.

Figures 3.9 and 3.10 show PCB layout of the bridge. The size of the board is 4700 x 

3900 [mil].  Ethernet PHY circuit  has been designed taking into account the length of the 

signal paths between DP83848CVV and J011D21B connector. These paths should not only be 

short, but also have equal length. Decoupling capacitors are placed close to the integrated 

circuits to better protect against voltage drops. The bridge hardware has been designed as an 

universal communication platform, which enables to connect not only to the Ethernet but also 

to CAN-bus, which is sometimes used in home-automation and industrial systems. The holes 

in the corners of the board are used to attach it to the chassis. 
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Figure 3.9. The ZigBee-to-Ethernet Bridge - PCB layout, top layer.

Figure 3.10. The ZigBee-to-Ethernet Bridge - PCB layout, bottom layer.
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3.5. Software implementation.
Firmware  for  a  ZigBee-to-Ethernet  bridge  has  been  developed  using  Atollic 

TrueSTUDIO for STM32 – embedded systems development tools [36]. It is an eclipse-based 

integrated development environment (IDE) that integrates the GCC toolchain. It supports ST-

Link/V2 in-circuit debugger, which was used to program the STM32F4 microcontroller flash 

memory and for debugging.

The ZigBee-to-Ethernet  bridge firmware relies  on several  software components,  as 

illustrated in Figure 3.3. The main software building blocks are described in the following 

sections.

3.5.1. LwIP TCP/IP Stack.
To  provide  internet  network  connectivity  TCP/IP  stack  libraries  and  drivers  are 

required. LwIP is a open source TCP/IP stack designed for embedded systems, distributed 

under modified BSD license [37]. The main goal in designing LwIP was to make it suitable to 

run on machines with tens kilobytes of free RAM and about 40 kilobytes of Flash memory, 

providing  full  TCP/IP  support.  Hence  the  name  –  LwIP  which  means  Lightweight  IP. 

Protocols included in LwIP are as follows: IP, ICMP, IGMP, UDP, TCP, SNNP, DHCP, PPP 

and ARP. 

LwIP is adapted to work both with and without an operating system. Three types of 

API are available:

• low-level API,

• netconn API,

• BSD-socket API.

3.5.1.1. Low-level LwIP API description.

Low-level API (also called “core”, “callback”, “native” or “raw” API) is designed to 

be  used  without  an  operating  system  and  uses  callback  mechanism,  which  means  that 

programmer has to  write application callback functions  that  get  called by the stack when 

events such as incoming data  available,  outgoing data  sent,  error  notifications,  poll  timer 

expiration, connection closed, etc. occur [38].

3.5.1.2. Netconn LwIP API description.

Netconn API requires an operating system to work. Separate TCP/IP thread is created 

and it is responsible for processing all packets in the core of the stack. Programmer has to 

make sure that this thread is running and write his own application threads that communicate 
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with  TCP/IP  thread  through  message  boxes  and  semaphores.  In  contrast  to  “raw”  API, 

netconn API is sequential, which makes it easier to use the stack. Both netconn and raw API 

allow zero-copy functionality,  which means that while sending or receiving data, only the 

address of a buffer with user data is sent to lower layers of the stack, without creating separate 

temporary buffers for communication. Because of that, the memory is saved and the program 

is faster, but the program has to be written carefully to prevent re-using created buffers before 

the end of the transmission.

3.5.1.3. BSD-socket LwIP API description.

Socket  API  is  written  using  netconn  API,  so  it  requires  more  memory  to  work. 

Moreover it does not support zero-copy functionality. The main advantage of using Socket 

API is a portability of software with other posix operating systems stacks [38].

3.5.1.4. Selection of LwIP API for ZigBee-to-Ethernet bridge.

The netconn API has been selected to be used in the Bridge software, because it is well 

suited for embedded systems, requires less flash and RAM memory then socket API,  can 

operate in multi-thread environment and due to its simplicity.

3.5.2. Texas Instruments ZigBee stack – Z-stack.
Z-Stack™ is TI's ZigBee protocol stack for their ZigBee compliant transceivers. It 

supports both ZigBee and ZigBee PRO feature sets, and allows to implement Smart Energy, 

Home Automation and Commissioning Cluster Application profiles. Z-Stack™ gives the 

opportunity to update node software by Over the Air Download (OAD). Z-Stack is free, but 

the license allows it to be used only with TI's IEEE 802.15.4 transceivers. 

3.5.2.1. Texas Instruments solutions for ZigBee networking.

Z-Stack can be used on three different types of hardware/software platforms:

• CC2530 SoC, which integrates radio transceiver and a microcontroller running 

protocol stack and application layer, making the solution cheap, highly integrated with 

small PCB footprint. It is well suited for nodes that demand little computing power, 

and have to be small, cost effective and low-power.

• CC2530-ZNP, which is the same hardware as CC2530 SoC, but provides an interface 

to run the application layer on a main application processor, connected through the 

SPI, USART or USB interface. This solution facilitates the creation of reliable ZigBee 
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device which demands much computing power and is handling signals from many 

sources.  Moreover  time  to  market  is  reduced,  because  CC2530-ZNP is  a  ZigBee 

Compliant Platform (ZCP) [39].

• CC2520, which is only an IEEE 802.15.4 compliant radio transceiver and the higher 

layers: ZigBee protocol stack, and application are implemented in the host processor.

The ZigBee-to-Ethernet bridge uses the CC2530-ZNP and the Texas Instruments 

ZigBee Application Processor (ZAP) framework running on the application microcontroller 

(STM32F4). A ZAP framework is described in the following section.

3.5.2.2. Description of a ZAP framework.

The architecture of a ZAP framework is illustrated in the Figure 3.11. The ZAP framework 

uses TI's OSAL non-preemptive operating system, and provides the same API as TI's ZigBee 

stack. There are four layers, and each layer is implemented as a separate task within OSAL:

• HAL – hardware abstraction layer used to make upper-layers of software independent 

from the underlying hardware. To run the HAL-based code on a particular hardware a 

so-called port has to be written. The port is the implementation of low-level functions 

such  as:  communicating  via  SPI  interface,  running  timers,  reading  and writing  to 

GPIOs etc., specific for particular microcontroller.

• ZAP – is a translation layer between Z-Stack and ZNP APIs, thus application written 

using Z-Stack API can be simply moved to CC2530-ZNP based system.

• ZCL – handles functions from ZigBee Cluster Library.

• Application  –  an  operating  system  task  where  programmer  defines  the  top-level 

functionality of the ZigBee device using ZAP framework and ZCL libraries.
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Figure 3.11. Layers of the ZAP framework used in the project [47].

Such layer based approach to writing software, and the well-defined framework allows 

programmer to focus mainly on the application layer and spend less time writing a program 

for the device. It also makes it easier to pass required tests in order to qualify for a ZigBee 

Certified Product logo.

3.5.3. FreeRTOS overview.
In order to improve the software architecture, and make it easily extendable, a real 

time  operating  system (RTOS)  is  used.  FreeRTOS has  been  selected.  It  is  free,  even  for 

commercial products and supports 31 hardware architectures. The FreeRTOS kernel can be 

configured to be preemptive or cooperative [40]. It is designed to have small footprint and 

requires  less  then  9  kilobytes  of  flash memory.  It  is  easy to  use,  and  to  port  to  another 

hardware platforms. 

3.5.4. Application-level software description.
The application software of a ZigBee-to-Ethernet bridge runs a multi-task environment 

and consists of three tasks:

• task_httpserver – is responsible for running HTTP server.

• task_tcp_db – which sends data from PAN network sensors to a remote server through 

a dedicated TCP port. The server runs a Java web application, that is used to control 

and acquire measurements from devices within PAN networks controlled by ZigBee-
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to-Ethernet bridges. Measurement data is stored in an external MySQL database.

• task_znp – is responsible for ZigBee connectivity, by running OSAL operating system 

(described  before)  inside  a  single  FreeRTOS  task  with  appropriate  OSAL-tasks 

defined.

3.5.4.1. Description of the RTOS task responsible for ZigBee communication.

The “task_znp” contains implementation of an application layer of ZAP framework 

described in the section 3.5.2.2, and runs TI's OSAL operating system.

A communication with another tasks is done by RTOS queues. These queues are used 

to send configuration commands for a ZigBee networks, as well as to provide measurement 

values – from ZigBee nodes within a ZigBee-to-Ethernet bridge PAN network – in a Ethernet-

based TCP/IP network, by “task_httpserver” and “task_tcp_db”.

ZAP layer of the ZAP framework (Figure 3.11) uses HAL functions defining methods 

to access a specific hardware platform. Texas Instruments provides only two kinds of HAL 

port for their microcontrollers, so it was required to write HAL port to access STM32F4 

microcontroller peripherals. An interface between CC2530-ZNP and STM32F4 (application 

processor) is realized using SPI peripheral, and this interface is described in the following 

subsection.

3.5.4.1.1. SPI transmission between an application processor and CC2530-ZNP overview.

Figure 3.12 shows the general frame format used for SPI transmission between a 

CC2530-ZNP and an application processor. SPI has been selected because of higher bit-rate 

than in case of USART based transmission. CC2530-ZNP works as SPI slave, STM32F4 is 

SPI master and the bus clock is up to 4 MHz. 

Figure 3.12. General ZNP frame format used for SPI transmission.

SPI mode of transmission in CC2530-ZNP uses three types of transactions:

• AREQ – Asynchronous Request - single direction transaction in which an application 

processor  sends  data  and  requires  no  acknowledgment  from  CC2530-ZNP.  After 

sending  this  message  application  processor  processes  another  instructions  in  the 

“task_znp” task without waiting for a response.

• SREQ – Synchronous Request – application processor in a single transaction not only 
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sends  data,  but  also  receives  response  from  CC2530ZNP.  SRSP  –  Synchronous 

Response – is the type of command send from ZigBee module.

• POLL – is the type of transaction in which CC2530-ZNP sends its queued data. When 

the POLL frame is ready, the CC2530-ZNP indicates this by pulling the SRDY (slave 

ready) line low, as long there is no pending transmission indicated by the MRDY line 

(master ready).

Figure 3.13 provides an illustration of how communication with SREQ command 

looks like. The rest of the commands are similar.

Figure 3.13. Illustration of SREQ – SRSP transaction, carried out between application processor and CC2530-

ZNP.

When application processor has SREQ command to send, it holds MRDY pin low, and 

waits for low level on the SRDY line. This indicates that CC2530-ZNP is ready to receive 

command. Then SREQ is being transmitted, and after that  application processor waits for 

SRDY line to go high. At this moment SRSP command from CC2530-ZNP to application 

processor is being transmitted. Because communication on the SPI bus is between master and 

slave, master has to generate the clock for the whole transmission. If all bytes specified  by 

the length field in SRSP frame are received, the application processor sets its MRDY line 

high, ending the transaction process. 

3.5.4.1.2. Description of DMA-based algorithm to handle SPI communication.

The formula used to calculate the time needed to send “x” bits, with f SPI clock 

frequency is as follows:

T ( x)= x
f SPI

. 
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The longest possible frame, having 253 bytes therefore requires:

T (253⋅8)=253⋅8
4⋅106 [s ]=0.506[ms ] .  

HAL functions for handling SPI transmission offer only polling mode, where the application 

must  constantly  check  if  the  transmission  has  finished.  There  are  situations  when  large 

amount of transmissions are carried out one by one, and the CPU can become blocked due to 

polling mode of transactions, which may affect other tasks requiring computing power. To 

overcome  this  problem  higher-layer  functions  responsible  for  SPI  communication  were 

changed to allow DMA transfer, which saves CPU computing power.

An exemplary sequence diagram for SREQ type of transaction is presented in Figure 

3.14.  Other types of transaction are implemented in a similar way. 

Figure 3.14. Sequence diagram of algorithm used to process SREQ command for the CC2530ZNP.

Sequence  diagram shows SREQ command being  executed  within  “task_znp”.  The 

rectangle on the lifeline represents time in which CPU computing power is needed. 

To indicate that an application processor has data for CC2530-ZNP, a MRDY pin is set 

high within the “task_znp”.  Then the “task_znp” tries to take RTOS semaphore with timeout 
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parameter.  Now the “task_znp” is  blocked as long as semaphore is  not taken,  or timeout 

occurs.

When CC2530-ZNP is ready to receive SREQ frame, it indicates it by setting SRDY 

pin low, which is handled by external interrupt service routine (EXTI_SRDY_IRQ) in the 

application processor. In this routine DMA peripheral is configured to send SRDY frame as a 

whole, and is triggered to do that.

End of DMA transaction is indicated by DMA interrupt. CC2530-ZNP processes the 

received data, executes requested command, and when has SRSP frame ready sets SRDY line 

high, which triggers a next external interrupt in the application processor.

The application processor configures DMA to receive a first byte of a SRSP frame 

containing  an  information  about  a  frame length.  This  length  is  known in  the  next  DMA 

interrupt handler function, in which DMA peripheral is configured to receive the rest of the 

SRSP frame.

Reception of the frame is indicated by the application processor by setting MRDY line 

high, then RTOS semaphore is given. After that “task_znp” is in ready state.

Most of a transmission time the CPU is used to perform another RTOS tasks, which 

increases total performance of the microcontroller. To prevent conflicts, only one task has an 

access to SPI used for communication with CC2530-ZNP. 

3.5.4.1.3. Software command interface for CC2530-ZNP.

The  types  of  transactions  mentioned  in  subsection  3.3.5.1.1  are  used  to  process 

CC2530-ZNP software command interface, which consists of:

• SYS interface – used for low level functions for CC2530-ZNP hardware and software, 

such as non-volatile memory, GPIO pins or ADC.

• Configuration interface – “network specific” and “device specific” parameters can be 

set via this interface, and they are stored in a non-volatile memory. “Network specific” 

parameters should be the same within all devices in a network, for example: radio 

channel list, security key or PAN ID. “Device specific” parameters can vary depending 

on a ZigBee node: device type (coordinator, router, end-device), or user description.

• Simple API interface – used for very simple applications,  with limited features  of 

ZigBee stack.

• AF interface – used to interact with the Application Framework layer.

• ZDO interface – used to interact with the Zigbee Device Object layer.

• UTIL interface – additional functionality for ZigBee module, used for example to test 

connection between application processor and CC2530-ZNP.
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3.5.4.1.4. Description of a ZAP application layer.

The application layer of the ZAP framework is  based on an example provided by 

Texas Instruments. 

Texas  Instruments  provides  “ZigBee  Sensor  Monitor”  MS  Windows  application, 

which visualizes ZigBee network. Each node is presented as a circle with network address, 

measured voltage and temperature.  Nodes  are  connected by lines  symbolizing radio links 

between them. Thanks to using sample ZAP application code supplied with “ZigBee Sensor 

Monitor”  tool,  the PAN network handled  by the ZigBee-to-Ethernet  bridge  can  be  easily 

visualized.  To do that  the bridge must  be connected to  a  computer  by a  serial  port.  It  is 

however possible to redirect this communication to a TCP port, allowing to view the PAN 

network structure on-line.

In the network created for the demonstration of a bridge operation, there are ZigBee 

nodes  working  as  routers  and  end-devices.  In  the  constant  time intervals  they send their 

measurements to the central node  (the bridge) which is connected to the TCP/IP network. 

Measurements, and network specific parameters are then send from “task_znp” to “task_http” 

and “task_tcp_db” by the FreeRTOS queues. 

3.5.4.2. Description of the RTOS task responsible for handling HTTP requests.

The data sent by the “task_znp” is taken from the queue and stored on a local node list 

of the the HTTP task. The list implementation and data structure is available in appendix G. 

Among  other  parameters,  a  single  message  retrieved  from the  queue  contains  the  MAC 

address of the sending node. When new message arrives, the corresponding entry in the node 

list is updated with measurement data or new node is registered on the list. The node list is 

visualized as a table within a web page served by the ZigBee-to-Ethernet bridge. 

3.5.4.2.1. Handling HTTP requests using LwIP netconn API.

 The   LwIP   stack  does  not  support  HTTP server  functionality  so  it  had  to  be 

implemented. Figure 3.15 shows transactions which occur between web browser and the task 

acting as HTTP server. 
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 Figure 3.15. Transactions between web browser and “HTTP task”.

When user wants to configure bridge and to see data from nodes within its PAN network, he 

opens a web browser (for example Mozilla Firefox) and enters IP address of the bridge for 

example 192.168.0.10. After pressing “enter” the connection with port 80 is established and 

“GET /HTTP/1.1\r\nHost:  192.168.0.10\r\nUser-Agent:Mozilla/5.0  …  “  command  is  sent 

from the web browser. The HTTP task reads data from the port using the following part of 

code:
...
inbuf = netconn_recv(conn);

if (inbuf != NULL) {
if (netconn_err(conn) == ERR_OK) {

netbuf_data(inbuf, (void**)&buf, &buflen);
...

}
...

}
...

The netconn_recv() function blocks the task until data is in the network buffer, and then by 

netbuf_data() function, pointer to this data and its length is obtained. Now the “buf” is the 

pointer to “GET /HTTP/1.1\r\nHost:  192.168.0.10\r\nUser-Agent:Mozilla/5.0 … “ c-string. 

The strcmp() function from standard stdio.h library is used to recognize a string and execute 

appropriate “if” statement.

When the request to load the main page is detected, then standard “GET” response is 
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sent: “HTTP/1.0 200 OK\r\nContent-type: text/html\r\n”. “Content-type” statement informs 

the web browser about the kind of data which will be sent. In this case the “Content-type” is 

HTML document.  HTML document  is  dynamically  generated,  because  it  depends  on the 

settings of the bridge and current state of a PAN network. Sample code illustrating the sending 

of data is given below:

strcpy(cDynamicPage,
      (const char*)
"<div id=\"menu\" style=\"background-color:#FFFFFF;float:left;\">"
);

strcat(cDynamicPage,(const char*)"<table border=\"1\">");
//row 1
strcat(cDynamicPage,(const char*)"<tr><td>ZB IEEE address</td>");
strcat(cDynamicPage,(const char*)"<td> 0x");
for (i = 0; i < 8; i++) {

sprintf(temp_arr, "%x", zct.devIEEEaddr[i]);
strcat(cDynamicPage," ");
strcat(cDynamicPage,temp_arr);

}
strcat(cDynamicPage,(const char*)"</td></tr>");

//row 2
strcat(cDynamicPage,(const char*)"<tr><td>ZB short address</td>");
strcat(cDynamicPage,(const char*)"<td> 0x");
...

netconn_write(conn,cDynamicPage,u16_t)strlen(cDynamicPage),NETCONN_NOCOPY);

Because content of the web page is dynamically generated, the cDynamicPage[] table of type 

“char” is used to create c-string with HTML document. Example code presents creating the 

table, which is on the left, on the web page layout served by the bridge. First row of this table 

contains the IEEE address of the CC2530-ZNP ZigBee module integrated with a ZigBee-to-

Ethernet  bridge.  When  last  line  of  HTML  document  is  merged  with  c-string  in 

cDynamicPage[] table, the netconn_write() function is executed to send finished HTML file 

to the web browser. Appendix B contains view of HTML file, that is being sent. 

Browser receives HTML file content in which there are two statements informing that 

another data has to be uploaded:
…
<img src="bridge_logo.jpg" alt="bridge_logo" />
…
 <div id="measurements" style="background-color:#EEEEEE;float:left;">
  <iframe src="measurements.htm" width="800" height="600"></iframe>
 </div>
…

The first one is the “bridge_logo.jpg” image on top of the page. Web browser sends GET 
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request,  then  receives  acknowledgment  and  the  file,  which  it  wanted.  The  same process 

occurs in the case of “measurements.htm” file, which is situated in the middle “iframe” . 

3.5.4.2.2. Description of the layout of the web page served by the bridge.

The view of the web page served by the bridge is presented in Figure 3.16. The layout 

of the page is divided into four sections:

• the banner on the top,

• table with bridge settings on the left,

• data from sensors within the PAN on the right,

• footer at the bottom.

The table consists of parameters which user can change or parameters which only 

serve information. The first four fields of the table are read only:

• ZigBee IEEE address,

• ZigBee short, network address,

• current radio channel in which the bridge operates,

• 64-bit Extended PAN ID, which is automatically set by coordinator during network 

formation.

The next three fields can be changed – they are used to change network settings of the bridge, 

and are as follows:

• IP address,

• subnet mask,

• default gateway.

The following fields also can be changed. They are stored in the non-volatile memory, and are 

used for ZigBee networking:

• user description – short text, which can be seen by another nodes in the network. This 

also can be stored in the MySQL database in the table describing all managed Bridges.

• PAN ID - the address of the network within a specific radio channel with range of 

values between 0x0000 and 0x3fff,

• list of channels in which bridge can start network. 
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Figure 3.16. View of the web page served by the Bridge.

3.5.4.3. Description of the Java web application to manage ZigBee-to-Ethernet bridges.

The “WSN Manager v1” java web application runs on the server and allows to view 

data collected from sensors in the long term. 

3.5.4.3.1. Use case UML diagram and main window of the “WSN Manager v1” web 

application.

Use case UML diagram of the “WSN Manager v1” web application is illustrated in 

Figure 3.17. 

69



Figure 3.17. Use-case UML diagram of the “WSN Manager v1” web application.

In the first version of created web application only a few functions are possible. User can add 

new bridge to the database. He inputs unique bridge ID, IEEE address, and description, then 

this values are saved in a new record in the sens_location table on the SQL server. If the 

bridge is saved in the database, user can connect to it by typing the IP address, and the TCP 

port. After that, if new measurement is sent by any ZigBee node, its parameters are forwarded 

into web application and stored into database. When a new node is connected to the PAN 

network, it is automatically added to the corresponding table. In any moment user can click 

the “update plot” button, and the plot with data from all sensors is generated.

Figure 3.18 presents the main screen of the web application. It has been written in Java 

in the NetBeans Integrated Development Environment (IDE). 
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Figure 3.18. View of the “WSN Manager” web application.

3.5.4.3.2. Description of the development environment and software frameworks used in 

“WSN Manager v1” web application.

NetBeans  IDE is  well  integrated  with  Java  and  services,  which  are  necessary for 

writing web applications,  such as:  servers,  databases and web services.  Moreover popular 

frameworks are supported. Two of them have been used in the project: Java Server Faces 

(JSF) and Hibernate 3.2.5:

Java Server Faces technology is  used to  build user interface on the server side.  It 

allows separation between the operation of the program and the presentation [41].  The Java 

code can be written, then tested, and when is done, its methods can be simply merged directly 

with  XHTML document,  that  can  be  prepared  by  another  developer.  Without  using  any 

scripts, java methods are integrated with XHTML tags. Example of this is shown below:

<p:commandButton id="cmd1" value="Save bridge" 
action="#{bridgeZbEth.saveBridgeInDB()}" />

This tag creates command button, which can be identified by another elements of the web 

page by its “id”. Value displayed in the button in the user interface is “Save bridge”. When the 

user clicks it, the method “saveBridgeInDB()”, which is the part of the “bridgeZbEth” object 

is executed. 

There are JSF component libraries available, which can be used to provide a nice, 

modern  look  of  the  page.  Some component  libraries  do  not  work  well  together,  so  it  is 

recommended to select one of them. In the project, the PrimeFaces is used. The main web 

page XHTML code is situated in Appendix C.
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Hibernate is an open source framework, which implements so called persistence layer 

–  the  layer,  which  translates  object-oriented  domain  model  into  relational  database  [42]. 

Database tables are mapped into Java classes, hiding from the programmer point of view the 

methods and algorithms used to low-level database access. SQL calls are generated by the 

Hibernate automatically, and user do not need to manually convert received data into object 

domain [43]. Moreover it supports replacing the SQL database by another – only the little 

changes in mapping files are needed. 

3.5.4.3.3. Connecting to a MySQL database by using hibernate framework.

To connect database tables with Java objects, the below listed files are needed:

• Hibernate Configuration File (hibernate.cfg.xml),

• Hibernate Helper File (HibernateUtil.java),

• Hibernate Mapping Files and Java classes.

Hibernate  Configuration  File  contains  information  about  the  database  connection, 

resource mappings and used SQL queries [44]. In this file SQL driver, URL to the database, 

user name and password are described. It also contains paths to the mapping files for each 

table in the specified database. 

Helper File is used to access Hibernate's SessionFactory to obtain a Session object, 

according to the settings in the Configuration File. 

To  create  mapping  files  and  Java  classes  NetBeans  IDE  provides  the  so  called: 

“Hibernate  Reverse  Engineering  Wizard”.  IDE  connects  to  the  database  specified  in  the 

Configuration  File  and allows user  to  select  tables,  which  are  to  be  mapped to  the  Java 

classes, then reverse engineering file is created  (hibernate.reveng.xml). 

Finally using hibernate.reveng.xml and hibernate.cfg.xml files, the mapping files and 

Java classes are created.

MySQL database is used in the project, and it consists of the following tables:

• sens_data – measurements from all sensors,

• sens_sensors – list of all sensors from all nodes,

• sens_nodes – list of all ZigBee nodes within bridges PAN networks,

• sens_location – list of location of each PAN, which is synonymous with the location of 

each Bridge,

• sens_types – types of measured values.

Corresponding to these tables files created by Hibernate wizards are:
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• SensData.hbm.xml, SensData.java,

• SensSensors.hbm.xml, SensSensors.java,

• SensNodes.hbm.xml, SensNodes.java,

• SensLocation.hbm.xml, SensLocation.java,

• SensTypes.hbm.xml, SensTypes.java.

This  example shows how function to insert  new record into the table with data  from the 

sensors looks like:

private void saveNewMeasurement(Double value, Date date, int sensorId) 
{
   Session session = HibernateUtil.getSessionFactory().getCurrentSession();
   session.beginTransaction();
   SensData measurement = new SensData(date, sensorId, value);
   session.save(measurement);
   session.getTransaction().commit();
   HibernateUtil.getSessionFactory().close();
}

At  first  connection  session  is  created,  the  new  measurement  is  saved  into  it,  then  it  is 

committed to the database and finally the session is closed.

3.5.4.4. Description of RTOS task responsible for communication with “WSN Manager 

v1” Java web application.

The task responsible for communication with the web application checks if the new 

message  is  available  in  the  FreeRTOS queue.  If  so,  the  data  is  prescribed  into  the  data 

structure which is then sent via TCP port 1239. The main loop of the task is as follows:

while(1) {
  if(connection_is_ok(newconn1)==0) {
    netconn_close(newconn1);
    netconn_delete(newconn1);
    newconn1 = netconn_accept(conn1);
  }
  if((newconn1 != NULL)) {
    if(connection_is_ok(newconn1)==1) {
      while((tmp2 = uxQueueMessagesWaiting(sensorData_queue_db)) > 0) {
        if(pdTRUE == xQueueReceive(sensorData_queue_db,&msg_static,100)) {
          sendSensorData(&msg_static,newconn1);
        }
      }
    }
    vTaskDelay(DLY10ms);
  }
}

In the loop the connection is checked. If it is closed, the current connection handle is deleted, 
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and the task is blocked, by the netconn_accept() function, until a new connection is requested. 

3.6. Test of the system
View of the assembled prototype of the ZigBee-to-Ethernet bridge is given in Figure 

3.19.  Test  network  used to  verify operation  of  the  device  is  presented  in  the  window of 

ZigBee Sensor Monitor Application provided by Texas Instruments, which is illustrated in 

Figure 3.20. 

Figure 3.19. View of the assembled ZigBee-to-Ethernet bridge.
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Figure 3.20. View of the tested network containing the Bridge (Red circle) and two nodes sending periodically  

generated sample values.

Figure 3.21. View of the web page served by the Bridge. PAN network contains two nodes.
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This is a star network topology in which two nodes are directly connected to the bridge, but 

also  another  topology  was  tested,  in  which  one  of  the  nodes  is  intermediate  node,  that 

transfers  data  from  the  second  one.  Two  ZigBee  nodes  periodically  send  sample 

measurements to the bridge,  and the bridge sends reports  via serial  port  to the computer, 

running  Sensor  Monitor  Application.  Yellow circles  contain  network  addresses,  measured 

values and time of last update.

Simultaneously the Bridges PAN network is monitored by the web page, which can be 

seen in Figure 3.21. Moreover the “WSN manager” Java Web Application runs and constantly 

stores measured values which can be displayed as is shown in Figure 3.18. During the test 

there were no errors, and the system worked reliably.
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4. DESIGN OF A ZIGBEE-TO-IEC61850 BRIDGE.

4.1. System architecture.

4.1.1. A ZigBee-to-IEC61850 bridge from the IEC 61850 network point of view.
A ZigBee-to-IEC61850 bridge is seen from the IEC 61850 network point of view as an 

Intelligent Electronic Device (IED). Figure 4.1 shows an IEC 61850 network. Ethernet bus is 

the physical medium to which multiple IEDs are connected. One of the IEDs is named as 

“WSN network”. This IED is a collection of Logical Devices (LDs) – in this case ZigBee 

nodes. Each LD corresponds to a physical ZigBee node in the PAN network. Depending on 

the function performed by the ZigBee nodes in the substation, appropriate logical nodes have 

to be selected to describe IEDs functions in the IEC 61850 semantics. 

In  the  presented  exemplary  solution,  the  WSN  network  consists  of  a  ZigBee 

coordinator  (ZigBee-to-IEC61850 bridge)  and a  ZigBee router  with a  temperature  sensor. 

Logical nodes are grouped and the first letter of their name determines to which group they 

belong.  In IEC 61850-7-4 document [23] logical  node classes are described.  Temperature 

measurement  can be described using “LN: Temperature supervision” node class  –  STMP, 

which belongs to the group “Supervision and monitoring”, and includes a Tmp Data Object, 

that stores the temperature value. The “WSN network” IED acts as a server and contains a 

local database that stores measurements  acquired from the ZigBee nodes within the PAN 

network. Then these measurements can be acquired by any other IEDs.

Figure 4.1. ZigBee-to-IEC61850 bridge acting as an Intelligent Electronic Device (IED).
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ZigBee network does not give guaranties on delivery time of data packets. These times may 

vary  with  network  size  and  topology,  current  network  load  etc.  For  this  reason the  data 

available in logical nodes is considered non-real-time. Thus reading this data does not require 

IEC 61850 real-time protocols such as GOOSE or SV, although it's  possible to use them. 

However, the most adequate method of data exchange for ZigBee-toIEC61850 bridge appears 

to be MMS.

4.1.2. Hardware components of a ZigBee-to-IEC61850 bridge.
Figure 4.2 presents hardware components used in the “WSN network” IED. The most 

important part of the IED is a ZigBee-to-IEC61850 bridge which is in scope of this work. The 

prototype  design  is  based  on  Development  Kit  DK61,  provided  by  Beck  IPC GmbH.  It 

contains IPC@CHIP SC143 Embedded Web Controller.The kit is shipped with Paradigm C++ 

compiler and tools for developing applications. To make an IEC 61850 compliant device, it's 

best  to  use  proven and reliable  hardware  and  software  components  and tools.  Beck IPC 

GmbH company offers reliable industrial control technology and communication products. 

They provide IEC61850 libraries suited to the SC143, which have been used in the project. 

Figure 4.2. Components of the “WSN Network” IED.
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To connect  to  the  ZigBee  network,  the  CC2530-ZNP module  is  used  along  with 

ZigBee software stack provided by Texas Instrument. The bridge acts as a ZigBee coordinator 

and a local database for other IEDs. The presented prototype uses remote temperature sensors 

only.  Depending on the functions required by a substation, more sophisticated ZigBee nodes 

can be used. 

The components of the bridge and the software implementation issues are presented in 

the next subsections.

4.2. BECK IPC@CHIP Development kit DK61.

The DK61 development kit contains the evaluation board with the SC143 Embedded 

Web  Controller.  It  integrates  96  MHz  SC186-EX,  16-bit  186  processor,  8  MB  of  RAM 

memory  and  8  MB  of  flash  memory.  The  following  peripherals  are  provided  by  this 

controller:

• 2 x Ethernet,

• CAN 2.0,

• USB host and device,

• 34 GPIOs

• 16-bit address/data bus,

• SPI,

• I2C,

• RS232/422/485,

• DMA controller.

All of them are available on DK61 board connectors, so it is powerful platform, which can be 

used to integrate with many industrial communications standards. The SC143 controller is 

supplied  in  a  BGA177 package.  It  uses  preinstalled  @CHIP-RTOS – real  time operating 

system with full  TCP/IP stack,  Web server,  FTP server, and Telnet server. Up to 12 DOS 

programs  can  run  in  that  operating  system simultaneously.  They are  loaded  by  the  FTP 

connection.

4.3. BECK software tools used in the design.

The following software tools provided by Beck have been used in the project:

• Paradigm C++ Beck IPC Edition,

• IPC@CHIPTOOL,

• Postmake 2,
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• ICD Designer,

• IPC@CHIP RTOS,

• IEC 61850  library.

4.3.1. Paradigm C++ development environment.
Paradigm C++ Beck IPC Edition  is  the  development  environment  which  provides 

tools to write, build and debug software for Beck's IPC@CHIP. To run it, an USB hardware 

license key is needed. 

4.3.2. IPC@CHIPTOOL.
IPC@CHIPTOOL is  a  PC application  that  acts  as  a  communication  center  for  all 

IPC@CHIP – based products [45]. It is used to find IPC@CHIPs in the network, configure 

their  serial  numbers,  IP addresses,  network  masks,  gateway addresses  and other  network 

specific parameters. This software provides RTOS update functionality and allows to insert 

DOS programs into flash memory through a FTP connection. Typical IEC 61850 based DOS 

program requires additional files, which also can be loaded by the FTP protocol: 

• AUTOEXEC.BAT – contains a script which is executed on the system start (after reset 

or power-up) with a list of DOS programs and their input parameters.

• CHIP.INI – contains  IPC@CHIP system configuration settings, which are loaded at 

system startup. They relate to standard input devices,  timers, network protocols, serial 

ports settings (for example to use DMA or not), power save mode, name of the device 

and many other. 

• .ICD  file  –  the  defined  by  the  IEC  61850  configuration  file  written  in  the  SCL 

language.

• PIS10.key – the security key matching to the DK61 serial number. It is supplied with 

the IEC 61850 library.

IPC@CHIPTOOL  integrates  also  serial  and  telnet  clients,  with  are  convenient  during 

developing and testing applications for the IPC@CHIP.

4.3.3. Postmake 2.
Postmake 2 reduces the time needed to update software in the IPC@CHIP. It  runs 

automatically after build process and sets a FTP connection to replace old version of DOS 

program. There is no need to manually set such connection using IPC@CHIPTOOL.

4.3.4. ICD Designer.
ICD Designer facilitates the process of building IEC 61850 SCL configuration files. 
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Instead of the XML based semantics, a hierarchical tree view is presented, as is shown in 

Figure 4.3.

Figure 4.3. The view of ICD Designer main window.

All elements of the IED description are available through a graphical user interface in a clear 

and transparent manner, which greatly reduces SCL file development time.

4.3.5. IPC@CHIP-RTOS.
IPC@CHIP  RTOS  allows  to  execute  up  to  12  DOS  multi-task  programs 

simultaneously.  IPC@CHIP RTOS provides abstraction layer  for all  hardware peripherals, 

serial ports, network services and supports FAT file systems and disk drivers. The architecture 

of the IPC@CHIP RTOS is illustrated in Figure 4.4.
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Figure 4.4. Architecture of the IPC@CHIP-RTOS used in the project [46].

The  RTOS  provides  convenient,  well  documented  API  for  task  management, 

synchronization and communication. There can be 78 tasks running simultaneously, and the 

sum of available semaphores, timers, event groups is 128. To send data between tasks the 

mailbox mechanism can be used.  IPC@CHIP-RTOS integrates also a command shell. The 

system configuration is stored in CHIP.INI file. On startup, the AUTOEXEC.BAT script is 

executed automatically to, for example, start default applications [46].

4.3.6. IEC 61850  Protocol Integration Stack.
IEC 61850 protocol library for IPC@CHIP is provided by the SystemCORP Pty Ltd. 

IEC 61850 Protocol Integration Stack (PIS) is used as shown in Figure 4.5.
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Figure 4.5. Context diagram of the system containing IEC 61850 stack provided by the SystemCORP Pty Ltd.  

[47].

It runs on the top of the operating system – in this case @CHIP-RTOS. Each data object 

provided by an IED is described using SCL file, which has to be loaded by the stack using 

integrated XML Parser. User application communicates with the IEC61850 PIS using “Calls” 

and “Call-backs” mechanisms provided by the API. SNTP protocol is used to provide time 

synchronization between IEDs and it runs independently as a operating system task. User 

application contains objects which (through call-back functions) are mapped into IEC 61850 

Data Attributes (DA) described by the SCL file and provided by the IEC 61850 PIS. The API 

is divided into two categories:

• Client/Server Management,

• Data Attributes Access.

The following list presents the Client/Server Management functions:

• IEC61850_Create() -  returns a client or server object. Input parameters are used to 

specify the object type, and contain pointers to the callback functions.

• IEC61850_LoadSCLFile() - reads SCL file and configures the client or server.

• IEC61850_Start() – starts the server or client.

• IEC61850_Free() – deletes a client or server object.

 Whereas the Data Attributes can be accessed by these functions:
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• IEC61850_Read() – reads the value of a data attribute.

• IEC61850_Write() – writes the value to a data attribute.

• IEC61850_Update() – updates the value of a specified data attribute.  

The next subsections describe the process of the ZigBee-to-IEC61850 bridge design.

4.4. Hardware design.
The  first  step  in  building  the  ZigBee-to-IEC61850  bridge  was  to  connect  SC143 

Embedded Web Controller with the CC2530-ZNP. Figure 4.6 shows which external ports of 

the SC143 have been used in the project. CC2530-ZNP is connected to the SC143 via SPI 

interface with additional signals described in the subsection 3.4.3.3. In addition to integration 

with  the  IEC61850  network,  the  ZigBee  Sensor  Monitor  software  provided  by  Texas 

Instruments is used to view nodes in the bridge's ZigBee PAN. ETH0 Ethernet port of the 

DK61 development board is used to connect the prototype of the bridge to the IEC 61850 

network.

Figure 4.6. Hardware interfaces between SC143, CC2530-ZNP, Personal Computer and Ethernet bus.

4.5. Software architecture.
The  ZigBee-to-IEC61850 bridge software uses Texas Instruments ZAP framework 

described in subsection 3.5.2.2. It had to integrated with the the SC143 software. 

4.5.1. Z-Stack HAL port for SC143.
 Thanks to a layer-based approach of the Z-Stack software and ZAP framework, to 

integrate the ZigBee module with the system, only the so called port has been written. The 

port contains definitions of the functions used to access the hardware CC2530-ZNP interface, 

and other peripherals used by TI's OSAL system. The port uses high-level software API for 
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the SC143 hardware, that is provided by IPC@CHIP-RTOS. 

4.5.1.1. SPI interface for communication with the CC2530-ZNP.

To access SPI interface the following definitions are made:

static uint8 inByte; 
#define HAL_SPI_SS_ON()           hal_write_pio(11,0);
#define HAL_SPI_SS_OFF()           hal_write_pio(11,1);
#define HAL_SPI_WRITE_BYTE(X) spi_read_write_hw(

(void far*) &(inByte),&(X), 1);
#define HAL_SPI_READ_BYTE()         inByte
#define HAL_SPI_WAIT_DONE() 
#define HAL_SPI_INIT()            spi_init_hw(SPI_MODE0,50)

The  hal_write_pio(11,0)  function  sets  logical  “0”  on  the  pin  P11.  SPI  API  function 

spi_read_write_hw() blocks the calling task until specified number of bytes are sent via SPI. 

Because it is a full-duplex transmission, and after each transfer the output register of the SPI – 

master contains the byte received from the SPI – slave, this single function is used to read and 

write data. HAL definition used by the upper-layers of Z-Stack sends only one byte and after 

each operation the received value is  saved the inByte variable.  The frequency of the SPI 

master clock is specified by a CPU frequency divider passed as the second argument of the 

spi_init_hw() function. The followng formula is used to determine the clock speed:

SPI freq=
CPU freq

divider⋅2+ 2
.

4.5.1.2. Setting serial port for communication with Sensor Monitor software.

To communicate with the PC with running Sensor Monitor software, the Fossil API 

has been used. It includes buffers for data pending transmission and for received bytes. Their 

size can be changed using CHIP.INI file. Internally Fossil performs serial port transmission 

using DMA peripheral. The API is very simple and the following functions are used in the 

project of the bridge:

• fossil_init() - initializes the Fossil driver,

• fossil_setbaud() - sets serial port parameters: baudrate, parity, word length and stop 

bits,

• fossil_getbyte() - reads the byte from the input buffer,

• fossil_status_request() - returns the status of the serial port.
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4.5.1.3. Configuration of @CHIP-RTOS timers to run TI's OSAL.

To run TI's OSAL, the system timer had to be ported. System clock is initialized by the 

following procedure, which uses IPC@CHIP-RTOS Hardware API:

void InitClock(void)
{
   /* Configure TimerA as 1-KHz HAL Board timer to drive OSAL 

timers and  block waiting/sleeping. */

  hal_install_isr(8,1,tim0_isr_func);
  hal_init_timer(0,0x03,0x3000);
  hal_start_timer(0); //start timer0
}

The hal_install_isr() is used to set external and internal interrupts. It contains three arguments:

• unsigned short irq – the number specifying which interrupt is selected,

• unsigned  short  count  –  the  number  of  generated  interrupts  before  executing  the 

isr_handler,

• InterruptHandler  isr_handler  –  the  pointer  to  the  function  which  is  executed  after 

interrupt. 

The hal_init_timer() sets the timer, timer mode, and a clock divider. To start the Timer0, the 

hal_start_timer() function with argument “0” is executed.

4.5.2. Application description.
Figure 4.7 presents architecture of a ZigBee-to-IEC61850 bridge software. The 

following subsections contain description of each software component.

Figure 4.7. Software architecture of a ZigBee-to-IEC61850 bridge.
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4.5.2.1. Interactions between RTOS tasks.
The implementation of main() function is as follows:

int main(int argc, char *argv[])
{
  RTX_Create_Msg(&temperature_Msg);

 RTX_Create_Task(&task_iec61850_Id, &task_iec61850_DefBlock);
 RTX_Create_Task(&task_znp_Id, &task_znp_DefBlock);

while(1) {
RTX_Sleep_Time(1000*60);

   }
   return 0;
}

The first step is to create a queue to communicate between the ZigBee and IEC61850 

tasks, that are started by the next two RTX_Create_Task() functions. The rest of application is 

carried out by these tasks, and the main task enters an infinite loop.

Figure  4.8  shows how data  from a  ZigBee node  is  received  and saved in  a  local 

database. ZigBee nodes periodically send temperature values, which are handled by the RTOS 

task responsible for ZigBee communication.

Figure 4.8. Path of the data from ZigBee node to a local database of a ZigBee-to-IEC61850 bridge.

Next, the received temperature value and identifier of the ZigBee node are sent to the RTOS 

message queue.  Finally,  running in an infinite  loop Measurement Handler function in the 

IEC61850 task, checks whether there is a pending message, and receives it. Then the fields of 

the local database corresponding to the ZigBee node are updated.
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4.5.2.2. Description of the IEC61850 RTOS task.

After calling IEC61850 task creation API, the functions illustrated in Figure 4.9 are 

executed. 

Figure 4.9. Function calls in the IEC61850 task.

4.5.2.2.1. IEC61850 object creation.

At  first  server  object  is  created  by  IEC61850_Create()  function.  Other  devices 

connected  to  a  IEC61850  network  can  only  read  values  that  are  made  available  by  the 

prototype of the bridge. This is why only the ReadCallbackFunction() is defined. It describes 

how do handle client read calls. Measurements stored in the local database are returned as the 

IEC61850_ObjectData type object,  and then are sent to the client by IEC 61850 protocol 

stack.

4.5.2.2.2. Loading SCL file.

When the server object is created, it is configured by the IEC61850_LoadSCLFile() 

function  which  uses  BridgeServer.ICD file  contained  in  the  Appendix  E.  IEC 61850 PIS 

provided by SystemCORP has a built-in SCL parser, so plain text file can be directly used. 

The file has been created using the SystemCorp ICD designer software. It describes a logical 

device called LD_ZigBee_Node, which has got two logical nodes: LLN0 and LN_STMP1. As 

is written in the reference [23], the STMP Logical Node shall be used to represent various 

devices that supervise the temperatures of major plant objects. If more than one temperature 

sensor is connected to the Logical Device, each of them shall be represented by another LN 

STMP. 
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LN STMP appears to be the most suitable for the sample application, which stores 

temperature  measurements  from ZigBee  nodes  in  the  PAN  network.  LN  STMP contains 

“Tmp” Data  Object  (DO) which  belongs  to  the  MV Common data  class.  Common Data 

Classes are described in the reference [22]. MV is the abbreviation for “Measured Value”. The 

“mag”  data  attribute  (DA)  within  the  MV  class  stores  analogue  value,  in  this  case 

temperature, whereas the “t” DA is the time stamp of the measurement. LLN0 – Logical Node 

zero is used to address common issues for LD such as operation time, local control behavior 

or reference to a higher level logical device [23]. In the described SCL file there is also a set 

of network-related addresses of a ZigBee-to-IEC61850 bridge: IP, subnet mask and default 

gateway.

4.5.2.2.3. Stating IEC61850 server.

If there are no errors during loading of the SCL file, the IEC61850_Start() function is 

executed, and then server starts operation. If there is a need to stop it, the API provides the 

IEC61850_Stop() function.

4.5.2.2.4. Local database creation.

Afterwards  a  local  database  is  created.  It  is  a  two-dimensional  array  of  the 

tBridgeObject type:

tBridgeObject atObj[OBJECT_TYPES][OBJECTS];

, where:

• OBJECT_TYPES - is the number of object types used in the application. Currently 

there is only one object type used: temperature sensor. 

• OBJECTS - specifies the maximum number of ZigBee nodes which are in the PAN 

network. 

The tBridgeObject structure is defined as follows:

typedef struct tag_BridgeObject
{

unsigned char ucObjectNo;     /* Object Number */
   unsigned char ucObjectType;    /* Object Type */
   unsigned long int ucObjectValue;        /* Object Value */
   unsigned short int   usiObjectQuality; /* Object Quality */
   tNTPTimeStamp tObjectTime;          /* Object Time */
}tBridgeObject;

These fields correspond to the data attributes specified in the BridgeServer.ICD file. In the 
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CreateLocalDatabase() function the values of the atObj[][] table are initialized. If the IED 

client wants to read data, the ReadCallbackFunction() is executed and by using the ID of the 

IEC61850 object, the requested values are returned from the local-data base and handled by 

the IEC 61850 stack. 

4.5.2.2.5. Updating IEC61850 local database objects.

Appendix  F  presents  the  implementation  of  the  function  used  to  update  the  local 

database.  It  operates  in  an  infinite  loop.  If  the  new  message  with  temperature  value  is 

available, at first, the index of the ZigBee node represented internally as a IEC61850 logical 

device,  is  searched  and  then  the  corresponding  object  is  updated  by  calling 

IEC61850_Update() function. The updated parameters are:

• temperature value,

• quality of the measurement,

• time stamp of the measurement.

The fields of each objects are described in the  BridgeServer.ICD file. 

4.6. Demonstration of the ZigBee-to-IEC61850 bridge.
Figure 4.10 presents a picture of a prototype ZigBee-to-IEC61850 bridge. The DK61 

board  is  connected  to  a  ZigBee  module  by 20  cm cables,  but  even  with  full  SPI  speed 

supported  by  a  CC2530-ZNP  (4  MHz)  the  transmission  is  reliable  in  a  laboratory 

environment. In the same way the USART-to-USB converter used for TI's Sensor Monitor 

application is connected.

During  IPC@CHIP-RTOS start-up  the  ZigBee-to-IEC61850  bridge  application 

software  is  executed.  When  a  ZigBee  node  appears  in  the  ZigBee  network  and  it  sends 

temperature value, the algorithm described in section 4.5.2 updates IEDs local database. Other 

IEDs can then access stored temperature values using IEC 61850 protocol. 
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Figure 4.10. The prototype of the ZigBee-to-IEC61850 bridge.
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5. CONCLUSION.

5.1. Summary of results.
The  master  thesis  describes  two  versions  of  device  which  can  be  used  to  merge 

Ethernet-based and ZigBee networks. 

First of them, the ZigBee-to-Ethernet bridge, uses TCP protocol to provide Ethernet-

based network interface to ZigBee PAN network, handling data exchange between ZigBee 

nodes  and  network  devices.  The  design  process  included  both  hardware  and  software. 

Schematic and PCB were designed, manufactured and the complete device was assembled 

and tested. This device is composed of STM32F4 microcontroller with ARM Cortex-M4 core 

and CC2530-ZNP ZigBee module. The software uses multiple RTOS tasks to handle ZigBee 

and TCP communication. The HTTP server on the bridge is also implemented, allowing the 

user to change network and device specific settings as well as to have an access to the ZigBee 

nodes via a web browser. Additional Java web application was written to provide MySQL 

database connectivity, handling and visualizing data from many PAN networks. 

The second version of the device, the ZigBee-to-IEC61850 bridge, is intended to be 

used as a part of a substation automation system. It acts as an intelligent electrical device 

(IED) called “WSN network”, and consists of logical devices that represent remote ZigBee 

nodes operating in an associated PAN network. The prototype device was built using DK61 

evaluation  board  containing  SC143 Embedded  Web  Controller  and  CC2530-ZNP ZigBee 

module. A demonstration application has been prepared, in which remote ZigBee nodes  send 

temperature values to the bridge. These values are stored in a local database, and are made 

available through the IEC61850 to other devices in the network. The demonstration software 

integrates multiple libraries and software components supplied by hardware vendors.

The ZigBee-to-Ethernet bridge may be used wherever it  is  needed to have on-line 

access to ZigBee nodes, for example in a home/building automation system but also in factory 

environments.  A special  case of  such environment,  considered  in  this  thesis  is  substation 

automation in which not TCP but IEC61850 protocol is often used. This is why a second 

version of the bridge, connecting ZigBee network and substation automation devices (IEDs) 

was also introduced. 

The substation automation is an important issue related to the energy grid of the future 

– so called “smart grid”. There is an ongoing effort to integrate wireless sensor networks in 

substation  automation.  This  work  is  in  the  scope  of  the  KIC-ActiveSubStations  project, 

conducted as a joint research and development project between several European universities 

and  industrial  partners,  under  European  Institute  of  Innovation  &  Technology  (EiT) 
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sponsorship. Both versions of the presented ZigBee to cable network bridge can be used in 

such applications, providing necessary communication services.

5.2. Further studies and work.
A ZigBee-to-Ethernet bridge can be improved as follows:

• The  system can  be  expanded  with  advanced  functionality  matched  to  the  ZigBee 

profiles such as:  Home Automation,  Building Automation,  Smart  Energy etc.  This 

includes changes in the firmware and Java web application.

• The web server on the bridge should allow not only to view data from the nodes, but 

also to control them.

• The PCB can be made smaller.

A ZigBee-to-IEC61850 bridge is also only a prototype and further studies and work 

can be carried out:

• A ZigBee profile suited to the real needs of a substation automation system should be 

proposed. This should begin with studies of the non-real-time applications in which 

wireless sensor networks can be beneficial.

• The software and the SCL files for the bridge may be expanded to allow configuration 

of the ZigBee network parameters.

• The complete device should be tested in a real substation.

Some of these issues are complicated and require a coordinated work of energy industry and 

wireless  network  (especially  ZigBee)  specialists.  The  key aspect  is  to  recognize  areas  in 

which devices with ZigBee connectivity can solve actual problems,  improve reliability or 

lower the cost of the system in a substation. 

93



6. REFERENCES.

6.1. Bibliography.

[1] CISCO, wiki: Internetworking Bacics: 

http://docwiki.cisco.com/wiki/Internetworking_Basics#OSI_Model_Physical_Layer.

[2] CISCO: TCP/IP Overview, Document ID: 13769.

[3] Cisco: The TCP IP Model of Networking: sisco ccna networking fundamentals chapter 2: 

http://www.youtube.com/watch?v=tCRBa3fTR3A.

[4] Radio-Electronics.com: IEEE 802.15.4 Technology & Standard:

http://www.radio-electronics.com/info/wireless/ieee-802-15-4/wireless-standard-

technology.php, www.radio-electronics.com.

[5] IEEE Std 802.15.4™-2003: Part 15.4: Wireless Medium Access Control (MAC) and 

Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-

WPANs), 1 October 2003.

[6] Gary Legg, ZigBee: Wireless Technology for Low-Power Sensor Networks,

http://eetimes.com/design/communications-design/4017853/ZigBee-Wireless-Technology-for-

Low-Power-Sensor-Networks.

[7] Jon T. Adams,  An Introduction to IEEE STD 802.15.4, Freescale Semiconductor, Inc. , 

conference publication.

[8] Daintree Networks Inc, Getting Started with ZigBee and IEEE 802.15.4.

[9] ZigBee Alliance: ZigBee Specification, ZigBee document 053474r13, 1 December 2006.

[10] ZigBee Alliance: ZigBee Cluster Library Specification, ZigBee document 075123r02ZB, 

29 May 2008.

[11] Jennic, ZigBee tutorial: 

94



http://www.jennic.com/elearning/zigbee/files/html/module5/module5-1.htm.

[12] Wikipedia: Data integrity: http://en.wikipedia.org/wiki/Data_integrity.

[13] Cisco: Ethernet Technologies: http://docwiki.cisco.com/wiki/Ethernet_Technologies.

[14] YouTube, Smart Grid Presentation Part 1: http://www.youtube.com/watch?

v=eOM4HyUcDoA&feature=related.

[15] KIC-InnoEnergy web page: http://www.kic-innoenergy.com/innovation-projects/active-

sub-stations.html.

[16] Jessica Stromback, Christophe Dromacque, Mazin H. Yassin, VaasaETT: The potential of  

smart meter enabled programs to increase energy and systems efficiency: a mass pilot 

comparison, Global Energy Think Tank.

[17] Patrycja Batóg: Indie i Chiny wyznaczają perspektywy światowego zapotrzebowania na 

energię, www.energetyka.wnp.pl, July 20, 2011.

[18] IEC, IEC61850-6: Substation automation system configuration description language.

[19] IEC, IEC61850-5: Communication requirements for function and device models.

[20] IEC, IEC61850-7-1: Basic communication structure for substation and feeder equipment 

– Principles and models.

[21] IEC, IEC61850-7-2: Basic communication structure for substation and feeder equipment 

– Abstract communication service interface (ACSI).

[22] IEC, IEC61850-7-3: Basic communication structure for substation and feeder equipment 

– Common data classes.

[23]  IEC, IEC61850-7-4: Basic communication structure for substation and feeder equipment 

– Compatible logical node classes and data classes.

95



[24] Yang Liu, Qiang Guan, Seung-Soo Han, Myeon-Song Choi, Seung-Jae Lee: Research on 

Optimization of Process Bus in IEC 61850-Based Substation Communication Network,  The 

International Conference on Electrical Engineering 2009.

[25] R.P. Gupta, Member, IEEE: Substation Automation Using IEC61850 Standard, Fifteenth 

National Power Systems Conference (NPSC), IIT Bombay, December 2008.

[26] Klaus-Peter Brand, Wolfgang Wimmer: The concept of IEC 61850. A new approach for 

communication in substation automation and beyond,  ABB review: Special Report IEC 

61850.

[27] http://www.us-cert.gov/control_systems/practices/documents/Securing%20ZigBee

%20Wireless%20Networks%20in%20Process%20Control%20System%20Environments.pdf.

[28] STMicroelectronics, data sheet  DM00035129, STM32F415xx, STM32F417xx.

[29]-STMicroelectronics reference manual RM0090, STM32F405xx, STM32F407xx,  

STM32F415xx and STM32F417xx advanced ARM-based 32-bit MCUs.

[30] Texas Instruments, ZigBee-PRO network processor description: CC2530-ZNP, ZigBee 

PRO Network Processor: accelerate your ZigBee Development.

[31] Texas Instruments, data sheet, SWRS081B CC2530F32, CC2530F64,CC2530F128, 

CC2530F256. A True System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee 

Applications.

[32] Media Independent Interface (MII) description: 

http://www.hardwarebook.info/Media_Independent_Interface_%28MII%29.

[33] National Semiconductor, data sheet: DP83848 PHYTER – Commercial Temperature 

Single Port 10/100 Mb/s Ethernet Physical Layer Transceiver.

[34] Pulse a technitrol company, data sheet: PulseJack 1x1 Tab-DOWN RJ45.

[35] Texas Instruments, CC2530EM Reference Design: http://www.ti.com/tool/cc2530em.

96



[36] Atollic TrueSTUDIO website – http://www.atollic.com/.

[37] Article about LwIP: http://en.wikipedia.org/wiki/LwIP.

[38] LwIP Wiki – http://lwip.wikia.com/wiki/LwIP_Wiki.

[39] Texas Instruments, document slyb134c.pdf:  ZigBee Wireless Networking Overview.

[40] FreeRTOS Overview: http://www.freertos.org/FreeRTOS_Features.html.

[41] Oracle, Java Server Faces Technology – 

http://docs.oracle.com/javaee/5/tutorial/doc/bnaph.html.

[42] Hibernate web page: http://www.hibernate.org/.

[43] Wikipedia: Hibernate (Java), http://en.wikipedia.org/wiki/Hibernate_%28Java%29.

[44] NetBeans tutorial: Using Hibernate in a Web Application: 

http://netbeans.org/kb/docs/web/hibernate-webapp.html.

[45] Beck IPC GmbH, Getting Stared, IPC@CHIP Embedded Web Controller Family.

[47] SystemCORP Pty Ltd. IEC 61850 Protocol API User Manual: Protocol Integration 

Stack.

[46] Beck IPC GmbH, IPC@CHIP® RTOS Documentation [Build 07.11.2011]: 

http://www.beck-ipc.com/files/api/scxxx/index.htm.

[47] Zin Kyaw, System Application Engineer, Texas Instuments: Creating a ZigBee 

SmartEnergy Device with the MSP430F54xx and the CC2530-ZNP (ZigBee Pro Network 

Processor)

97



6.2. APPENDIX A: IEEE 802.15.4 MAC frame formats.

6.2.1. Beacon frame format.
Figure  6.1  presents  beacon  frame  format.  Superframe  specification  field  in  MAC 

payload includes subfields which are required in  beacon-enabled mode of a transmission. 

Beacon order (BO) subfield specifies the transmission interval of the beacon, and is calculated 

from the following equation: 

BI=aBaseSuperframeDuration⋅2BO ,

where:

BI – Beacon interval,

BO – Beacon Order (0 ≤ BO ≤  14).

Superframe order specifies the length of time when superframe is active, and is calculated 

from:

SD=aBaseSuperframeDuration⋅2SO , 

where:

SD – Superframe Duration,

SO – Superframe Order (0 ≤ SO ≤  BO ≤  14).

Figure 6.1. Beacon frame format [5].

Final  CAP Slot  says  which  is  the  last  superframe  slot  utilized  by the  Contention  Active 

Period. Finally the PAN coordinator bit is set to 1 if beacon frame is being transmitted by a 

PAN coordinator.
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Further beacon MAC payload field name is GTS, which has GTS the specification 

subfield, the direction subfield and the  list subfield. It includes settings of Guaranted Time 

Slots, and addresses of the devices which uses this mechanism.

Pending  Address  Fields  include  addresses  of  devices,  to  which  coordinator  has 

pending messages.

Beacon payload contains space for information which may use higher layer protocols 

to implement other functions into Beacon frame.

6.2.2. Command frame format.

The second type of frame is the command frame (Figure 6.2). Command frames are 

used by a coordinator and network devices to react to events, manage and create a network. 

Figure 6.2. MAC command frame format [5].

There are following types of command defined in the IEEE 802.15.4 standard:

• association request,

• association response,

• disassociation notification,

• data request,

• PAN ID conflict notification,

• Orphan Notification,

• Beacon request,

• Coordinator realignment,

• GTS request.

6.2.3. Data frame format.

A data  frame  contains  the  data  which  next  higher  layer  has  requested  the  MAC 

sublayer to transmit [5], and is presented in figure 6.3 
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Figure 6.3. MAC data frame format [5].

6.2.4. Acknowledge frame format.
The last type of frame is the acknowledgment frame illustrated in figure 6.4, and it's 

MAC Protocol Data Unit consist of only 5 octets. The frame type subfield in the frame control 

field contains the value indicating type of frame which is being acknowledged (Beacon frame, 

Data frame, Acknowledgment frame, MAC command frame). The data sequence number is 

used to inform which frame is acknowledged.

Figure 6.4. MAC acknowledgment frame format [5].
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6.3. APPENDIX B: HTML files for HTTP server implemented in a ZigBee-
to-Ethernet bridge.

6.3.1. main_page.html

“main_page.html”  is the HTML file served by the bridge. Using web browser user can 

change setting of the bridge and see measurements of sensors within the PAN network.

<html>

<head>

</head>

<BODY bgcolor="#FFFFFF" text="#2477E6">

<div id="container" >

 <div id="header" style="background-color:#FFFFFF;">

  <h1 style="margin-bottom:0;">

   <img src="bridge_logo.jpg" alt="bridge_logo" />

  </h1>

 </div>

 <div id="menu" style="background-color:#FFFFFF;float:left;">

  <table border="1">

   <tr>

    <td>ZB IEEE address</td>

    <td> 0x #bridge IEEE address# </td>

   </tr>

   <tr>

    <td>ZB short address</td>

<td> 0x #bridge short network address# </td>

   </tr>

   <tr>

    <td>Current channel:</td>

    <td> #current ZigBee channel# </td>

   </tr>

   <tr>
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    <td>network <br> PAN id extended</td>

    <td> 0x #extended PAN network ID#</td>

   </tr>

   <form name="input" action="save_settings" method="get">

    <tr>

     <td>IP address</td>

     <td><input type="text" name="ip_addr" value="#bridge IP address#"/></td>

    </tr>

    <tr>

     <td>Subnet mask</td>

     <td><input type="text" name="subnet_mask" value="#bridge subnet mask#"/></td>

    </tr>

    <tr>

     <td>Default gateway</td>

     <td><input type="text" name="def_gate" value="#bridge default gateway#"/></td>

    </tr>

    <tr>

     <td>User description</td>

     <td><input type="text" name="user_desc" value="#user description#" /></td>

    </tr>

    <tr>

     <td>PAN ID</td>

     <td><input type="text" name="pan_id" value="#bridge PAN ID#" /></td>

    </tr>

    <tr>

     <td>Select channels <br> in which <br> bridge operates</td>

 <td>

      <input type="checkbox" name="chlst" value="c" checked /> channel 11 <br />

  <input type="checkbox" name="chlst" value="c" /> channel 12 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 13 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 14 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 15 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 16 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 17 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 18 <br />
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      <input type="checkbox" name="chlst" value="c" /> channel 19 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 20 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 21 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 22 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 23 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 24 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 25 <br />

      <input type="checkbox" name="chlst" value="c" /> channel 26 <br />

     </td>

    </tr>

    <tr>

     <td><input type="submit" value="save" /></td>

   </form>

     <form name="input" action="reset_znp" method="get">

      <td><input type="submit" value="reset ZNP" /></td>

    </tr>

 </form>

  </table>

 </div>

 <div id="measurements" style="background-color:#EEEEEE;float:left;">

  <iframe src="measurements.htm" width="800" height="600"></iframe>

 </div>

 <div id="footer" style="background-color:

 #FFA500;clear:both;text-align:center;">

   Copyright Dominik Nowak

 </div>

</div>

</BODY>

</html>

6.3.2. measurements.htm.

“measurements.htm” is displayed in the “iframe” of the main page. It displays in tabular form 

data from all nodes within PAN network in which the bridge is a coordinator.
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<html>

<body 

onLoad=\"window.setTimeout(&quot;location.href='/measurements.htm'&quot;,1000)\">

<h1 align=\"center\"> Data from sensors within the PAN </h1>

<table border=\"1\" align=\"center\" >

 <tr>

  <th><h2>network address</h2></th>

  <th><h2>temperature</h2></th>

  <th><h2>timestamp</h2></th>

 <tr>

  <td>0x#addr1"</td>

  <td>XXX *C</td>

  <td> YYY </td>

 </tr>

 <tr>

  <td>0x#addr2"</td>

  <td>ZZZ *C</td>

  <td> YYY </td>

 </tr>

 <tr>

  <td>0x#addr3"</td>

  <td>XXX *C</td>

  <td> YYY </td>

 </tr>

</table>

</body>

</html>
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6.4. APPENDIX C: WSN Manager Java Web Application – HTML file of 
the main web page.

“WSN Manager v1” XHTML page .

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

      xmlns:f="http://java.sun.com/jsf/core"

      xmlns:h="http://java.sun.com/jsf/html"

      xmlns:p="http://primefaces.org/ui">

<h:head>

  <title>WSN Manager v1</title>

</h:head>

<img src="logo1.png" alt="wsn_manager" />

<h:body>

 <h:form>           

   <p:megaMenu>   

     <p:submenu label="Add bridge" icon="ui-icon-check">  

       <p:column>  

         <p:panel header="Input bridge parameters:">  

           <h:panelGrid columns="2" cellpadding="2">  

             <h:outputText value="Bridge ID " />  

             <p:inputText id="input1" value="#{bridgeZbEth.bridgeID}" />

             <h:outputText value="IEEE address " />  

             <p:inputText id="input2" value="#{bridgeZbEth.IEEEaddr}" />

             <h:outputText value="description " />  

             <p:inputText id="input3"  value="#{bridgeZbEth.description}" />
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             <p:commandButton  value="Reset" type="reset" />  

             <p:commandButton id="cmd1" value="Save bridge"     

action="#{bridgeZbEth.saveBridgeInDB()}" />

           </h:panelGrid>  

         </p:panel> 

       </p:column>    

     </p:submenu>

     <p:submenu label="Connect to the bridge" icon="ui-icon-check">  

       <p:column>  

         <p:panel header="Input bridge network settings:">  

           <h:panelGrid columns="2" cellpadding="2">  

             <h:outputText value="Bridge IP " />  

             <p:inputText id="input4" value="#{bridgeZbEth.bridge_IP}" />

             <h:outputText value="port " />  

             <p:inputText id="input5" value="#{bridgeZbEth.bridge_port}" />

             <p:commandButton  value="Reset" type="reset" />  

             <p:commandButton id="cmd2" value="Start connection" 

action="#{bridgeZbEth.startBridge()}" />

           </h:panelGrid>  

         </p:panel> 

       </p:column>    

     </p:submenu>  

   </p:megaMenu>

   <p:commandButton id="cmd3" value="update plot" action="#{bridgeZbEth.updatePlot()}" 

update="linear" />

   <p:lineChart id="linear" value="#{bridgeZbEth.linearModel}" legendPosition="e"  

      title="data from sensors" minY="0" maxY="30" style="height:500px"/> 

  </h:form> 

 </h:body>

</html> 
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6.5. APPENDIX D: Schematic of a ZigBee-to-Ethernet bridge.
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6.6. APPENDIX E: SCL file used in a ZigBee-to-IEC61850 bridge.

<?xml version="1.0" encoding="UTF-8"?>
<SCL xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.iec.ch/61850/2003/SCL">
   <Header id="" version="3"/>
   <Communication>
      <SubNetwork name="SubNetworkName">
         <ConnectedAP iedName="DK61" apName="SubstationRing1">
            <Address>
               <P type="OSI-AP-Title">1,1,9999,1</P>
               <P type="OSI-AE-Qualifier">12</P>
               <P type="OSI-PSEL">00000001</P>
               <P type="OSI-SSEL">0001</P>
               <P type="OSI-TSEL">0001</P>
               <P type="IP">192.168.1.19</P>
               <P type="IP-SUBNET">255.255.255.0</P>
               <P type="IP-GATEWAY">192.168.1.1</P>
            </Address>
         </ConnectedAP>
      </SubNetwork>
   </Communication>
   <IED type="RTUType" manufacturer="SystemCORP Pty Ltd" configVersion="1.0" name="DK61">
      <Services/>
      <AccessPoint name="SubstationRing1">
         <Server timeout="30">
            <Authentication/>
            <LDevice inst="LD_ZigBee_Node" desc="">
               <LN0 lnClass="LLN0" inst="" lnType="LLN0_1">
                  <DataSet name="Measurement_DataSet">
                     <FCDA ldInst="LD_ZigBee_Node" prefix="LN_" lnClass="STMP" lnInst="1" doName="Tmp" 
daName="mag.i" fc="MX"/>
                  </DataSet>
                  <ReportControl rptID="myRepURCB_ID" confRev="0" intgPd="5000" 
datSet="Measurement_DataSet" name="UNBUFFERED_RCB" desc="Unbuf RCB">
                     <TrgOps dchg="true" qchg="true" dupd="true" period="true"/>
                     <OptFields seqNum="true" timeStamp="true" dataSet="true" reasonCode="true" entryID="true" 
configRef="true"/>
                     <RptEnabled max="6">
                        <ClientLN iedName="BridgeClient" ldInst="none" prefix="" lnClass="IHMI" lnInst="1"/>
                     </RptEnabled>
                  </ReportControl>
               </LN0>
               <LN lnClass="STMP" inst="1" prefix="LN_" lnType="STMP_0">
                  <DOI name="Tmp">
                     <SDI name="mag">
                        <DAI name="i">
                           <Private type="SystemCorp_Generic">
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="1" Field3="1" Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/></Private>
                        </DAI>
                     </SDI>
                     <DAI name="q">
                        <Private type="SystemCorp_Generic">
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="1" Field3="2" Field4="0" Field5="0" 
xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/></Private>
                     </DAI>
                     <DAI name="t">
                        <Private type="SystemCorp_Generic">
<SystemCorp_Generic:GenericPrivateObject Field1="1" Field2="1" Field3="3" Field4="0" Field5="0" 
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xmlns:SystemCorp_Generic="http://www.systemcorp.com.au/61850/SCL/Generic"/></Private>
                     </DAI>
                  </DOI>
               </LN>
            </LDevice>
         </Server>
      </AccessPoint>
   </IED>
   <DataTypeTemplates>
      <LNodeType lnClass="LLN0" id="LLN0_1">
         <DO name="Mod" type="ENC_1"/>
         <DO name="Beh" type="ENS_0"/>
         <DO name="Health" type="ENS_0"/>
         <DO name="NamPlt" type="LPL_0"/>
      </LNodeType>
      <LNodeType lnClass="STMP" id="STMP_0">
         <DO name="Mod" type="INC_0"/>
         <DO name="Beh" type="INS_0"/>
         <DO name="Health" type="INS_0"/>
         <DO name="NamPlt" type="LPL_0"/>
         <DO name="Tmp" type="MV_0"/>
      </LNodeType>
      <DOType cdc="LPL" id="LPL_0">
         <DA fc="DC" name="vendor" bType="VisString255"/>
         <DA fc="DC" name="swRev" bType="VisString255"/>
         <DA fc="DC" name="d" bType="VisString255"/>
      </DOType>
      <DOType cdc="INS" id="ENS_0" desc="Integer status">
         <DA dchg="true" fc="ST" name="stVal" bType="Enum"/>
         <DA qchg="true" fc="ST" name="q" bType="Quality"/>
         <DA fc="ST" name="t" bType="Timestamp"/>
      </DOType>
      <DOType cdc="ENC" id="ENC_1" desc="Controllable integer status">
         <DA dchg="true" fc="ST" name="stVal" bType="Enum"/>
         <DA qchg="true" fc="ST" name="q" bType="Quality"/>
         <DA fc="ST" name="t" bType="Timestamp"/>
         <DA dchg="true" fc="CF" name="ctlModel" bType="Enum" type="CtlModels"/>
      </DOType>
      <DOType cdc="INC" id="INC_0" desc="Controllable integer status">
         <DA dchg="true" fc="ST" name="stVal" bType="INT32"/>
         <DA qchg="true" fc="ST" name="q" bType="Quality"/>
         <DA fc="ST" name="t" bType="Timestamp"/>
         <DA fc="CF" name="ctlModel" bType="Enum" type="CtlModels"/>
      </DOType>
      <DOType cdc="INS" id="INS_0" desc="Integer status">
         <DA dchg="true" fc="ST" name="stVal" bType="INT32"/>
         <DA qchg="true" fc="ST" name="q" bType="Quality"/>
         <DA fc="ST" name="t" bType="Timestamp"/>
      </DOType>
      <DOType cdc="MV" id="MV_0" desc="Measured value">
         <DA dchg="true" fc="MX" name="mag" bType="Struct" type="AnalogueValue_0"/>
         <DA qchg="true" fc="MX" name="q" bType="Quality"/>
         <DA fc="MX" name="t" bType="Timestamp"/>
      </DOType>
      <DAType id="AnalogueValue_0">
         <BDA name="i" bType="INT32"/>
      </DAType>
      <EnumType id="ctlModel">
         <EnumVal ord="0">status-only</EnumVal>
         <EnumVal ord="1">direct-with-normal-security</EnumVal>
         <EnumVal ord="2">sbo-with-normal-security</EnumVal>
         <EnumVal ord="3">direct-with-enhanced-security</EnumVal>
         <EnumVal ord="4">sbo-with-enhanced-security</EnumVal>
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      </EnumType>
      <EnumType id="Mod">
         <EnumVal ord="1">on</EnumVal>
         <EnumVal ord="2">blocked</EnumVal>
         <EnumVal ord="3">test</EnumVal>
         <EnumVal ord="4">test/blocked</EnumVal>
         <EnumVal ord="5">off</EnumVal>
      </EnumType>
      <EnumType id="Health">
         <EnumVal ord="1">Ok</EnumVal>
         <EnumVal ord="2">Warning</EnumVal>
         <EnumVal ord="3">Alarm</EnumVal>
      </EnumType>
      <EnumType id="OrCat">
         <EnumVal ord="0">not-supported</EnumVal>
         <EnumVal ord="1">bay-control</EnumVal>
         <EnumVal ord="2">station-control</EnumVal>
         <EnumVal ord="3">remote-control</EnumVal>
         <EnumVal ord="4">automatic-bay</EnumVal>
         <EnumVal ord="5">automatic-station</EnumVal>
         <EnumVal ord="6">automatic-remote</EnumVal>
         <EnumVal ord="7">maintenance</EnumVal>
         <EnumVal ord="8">process</EnumVal>
      </EnumType>
      <EnumType id="CtlModels">
         <EnumVal ord="0">status-only</EnumVal>
         <EnumVal ord="1">direct-with-normal-security</EnumVal>
         <EnumVal ord="2">sbo-with-normal-security</EnumVal>
         <EnumVal ord="3">direct-with-enhanced-security</EnumVal>
         <EnumVal ord="4">sbo-with-enhanced-security</EnumVal>
      </EnumType>
   </DataTypeTemplates>
</SCL>
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6.7. APPEDNIX F: implementation of the function used to update local 
database of a ZigBee-to-IEC61850 bridge.

void huge MeasurementHandler(void)
{
   static unsigned long int temperatureValue[OBJECTS]; //temperature value
   IEC61850_ObjectData UpdateValue = {0}; // Value to send on Change
   IEC61850_ObjectID Object = {0}; // ID of the Object
   unsigned short int usiQuality = 0;     // Local Quality
   tNTPTimeStamp tNTPTime = {0};   // Local Time Stamp

   int zbNodeindex = 1;

   unsigned char data12B[12];

   while(1) // Indefinite Loop
   {
      if(0 == RTX_Get_Msg(temperature_Msg.msgID,(void far*) data12B)) {
         if(zbNodeindex = verifyMAC(data12B)) {
            temperatureValue[zbNodeindex-1] = (unsigned long int)data12B[8];

            /* Common Field to all Index */
            Object.uiField1 = zbNodeindex; // Object Number - there is currently only one ZigBee node
            Object.uiField2 = MEASUREMENT_INPUT;  // Object Type

            /* Object Value */
            UpdateValue.pvData = &temperatureValue[zbNodeindex-1];
            UpdateValue.ucType = IEC61850_DATATYPE_INT32;
            UpdateValue.uiBitLength = 32;
            
            /* Object Value Index */
            Object.uiField3 = VALUE_INDEX;
            
            /* Update Value in the database */
            atObj[MEASURINPUT_INDEX][zbNodeindex-1].ucObjectValue = temperatureValue[zbNodeindex-1];
              
            /* Send Update for Value */
            IEC61850_Update(myServer, &Object, &UpdateValue);
             
            usiQuality = 0;
              
            if(atObj[MEASURINPUT_INDEX][zbNodeindex-1].usiObjectQuality != usiQuality){
               /* Object Quality  */
               UpdateValue.pvData = &usiQuality;
               UpdateValue.ucType = IEC61850_DATATYPE_QUALITY;
               UpdateValue.uiBitLength = IEC61850_QUALITY_BITSIZE;
               Object.uiField3 = QUALITY_INDEX;
                
               /* Update Quality in the database */
             atObj[MEASURINPUT_INDEX][zbNodeindex-1].usiObjectQuality    = usiQuality;
                
               /* Send Update for Quality */
          IEC61850_Update(myServer, &Object, &UpdateValue);
            }

            /* Send Time */
            /* Convert to 61850 Time */
            ConvertTo61850Time(&tNTPTime);
            UpdateValue.pvData = &tNTPTime;
            UpdateValue.ucType = IEC61850_DATATYPE_TIMESTAMP;
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            UpdateValue.uiBitLength = IEC61850_TIMESTAMP_BITSIZE;
            Object.uiField3 = TIME_STAMP_INDEX;
      
            /* Update Time in the database */
            memcpy(&atObj[MEASURINPUT_INDEX][zbNodeindex-1].tObjectTime, &tNTPTime,                    

sizeof(tNTPTimeStamp));
 

            /* Send Update for Time Stamp */
            IEC61850_Update(myServer, &Object, &UpdateValue);
         }
      }
      RTX_Sleep_Time(50);
   }
}
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6.8.  APPENDIX G:  Implementation  of  the  list  for a  ZigBee-to-Ethernet 
bridge.

In the “HTTP task” the following structure is used to store data from a single node:

typedef struct {
void* next;
void* before;
uint8 flag_free;
uint16 groupId;         /* Message's group ID - 0 if not set */
uint16 clusterId;       /* Message's cluster ID */
afAddrType_t srcAddr;   /* Source Address it's an InterPAN message */
uint16 macDestAddr;     /* MAC header destination short address */
uint8 endPoint;         /* destination endpoint */
uint8 wasBroadcast;     /* TRUE if network destination was a 

broadcast address */
uint8 LinkQuality;     /* The link quality of the received data 

frame */
uint8 correlation;      /* The raw correlation value of the received 

data frame */
int8  rssi;              /* The received RF power in units dBm */
uint8 SecurityUse;       /* deprecated */
uint32 timestamp;        /* receipt timestamp from MAC */
uint8 nwkSeqNum;         /* network header frame sequence number */
uint16 temperature;
uint16 voltage;

}SensorTypedef_t;

It  is  assumed  that  nodes  can  be  dynamically  added  and  removed  from the  network,  so 

functions allowing that operations had to be implemented:

void sensors_init(void);
SensorTypedef_t* sensors_malloc(void);
void sensors_free(SensorTypedef_t* stp);
void sensors_process_incomming_data(afIncomingMSGPacket_static_t* msg);

The sensors_init()  function  sets  flag_free  parameter  to  one for  all  elements  in  the 

table:

static SensorTypedef_t sensors[MAX_SENS_NR];

All elements in the sensors[] table are now empty boxes, which can be occupied by new nodes 

dynamically connected to the PAN network.

The function used to allocate memory for new sensor is implemented as follows:

SensorTypedef_t* sensors_malloc(void)
{

uint16_t i;
for(i=0;i<MAX_SENS_NR;i++) {

if(sensors[i].flag_free == 1) {
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sensors[i].flag_free = 0;
sensors[i].next = NULL;
sensors[i].before = NULL;
sensors_nr ++;
return &sensors[i];

}
}
return NULL;

}

The following function is used to process in the “HTTP task” messages received from 

the “ZNP task”:

void sensors_process_incomming_data(afIncomingMSGPacket_static_t* msg)
{
    uint16_t i;
    SensorTypedef_t* stp;
    if(sensors_nr==0) {

    root = sensors_malloc();
    update_sensor(root,msg);
    return;

    }
    for(stp = root; stp != NULL; stp = stp->next) {

    if(msg->srcAddr.addr.shortAddr == stp->srcAddr.addr.shortAddr) {
    update_sensor(stp,msg);
    return;

    } else {
    if(stp->next == NULL) {

    stp->next = sensors_malloc();
    if(stp->next == NULL) {

    return;//error - no free memory
    } else {

    ((SensorTypedef_t*)(stp->next))->before = stp;
    update_sensor(stp->next,msg);

    }
    return;

    }
    }

    }

    return; //error – no free memory
}

When a  ZigBee  frame  from some node  arrives  to  the  bridge,  at  first  it  is  processed  by 

“task_znp”, and then is sent as afIncomingMSGPacket_static_t type element via FreeRTOS 

queue. If the new message in queue is available, in the “task_http” it is read and forwarded as 

a parameter to sensor_process_incomming_data()  function.  Within it,  at  first  it  is  checked 

whether there is no sensors saved in the sensors[] table. In this case pointer to first allocated 

node structure is assigned to the root pointer, which is declared as:

SensorTypedef_t* root;

It  represents  a first  element  of  the bidirectional  list.  The update_sensor()  function simply 
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prescribes elements from the location pointed by the “msg” , to the location pointed by the 

“root”.  If there is at least one sensor saved in the list,  the list is reviewed to find given 

element, which address is the same as address of structure pointed by the “msg”. If element is 

found its data is updated, otherwise new node is allocated, by the sensor_malloc() function 

and then is connected to the list.

The last function used to process data from “ZNP task” is as follows:

void sensors_free(SensorTypedef_t* stp)
{

if((stp->before != NULL) && (stp->next != NULL)) {
((SensorTypedef_t*)(stp->before))->next = stp->next;
((SensorTypedef_t*)stp->next)->before = stp->before;

}
if((stp->before != NULL) && (stp->next == NULL)) {

((SensorTypedef_t*)(stp->before))->next = NULL;
}

if((stp->before == NULL) && (stp->next != NULL)) {
((SensorTypedef_t*)(stp->next))->before = NULL;
root = (SensorTypedef_t*)(stp->next);

}

if((stp->before == NULL) && (stp->next == NULL)) {
return;

}
stp->flag_free = 1;
sensors_nr--;

}

If  some node has  to  be removed from the network,  or  timeout  occurs  the corresponding 

location storing its data must be freed by a call to sensor_free() function. Because sensor data 

is stored in the list, not only flag_free has to be set to one, but also the neighboring elements 

have to be connected.
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