

Równoległe kompensatory aktywne duŻej mocy

Daniel Wojciechowski

Agenda

- Uwarunkowania aplikacyjne równoległych kompensatorów aktywnych (RKA)
- Obwody główne RKA
 - model układu
 - obwód sprzęgający przekształtnik z siecią zasilającą
 - struktury obwodów RKA dużych mocy
 - metodyka doboru parametrów obwodowych
- Sterowanie RKA
 - regulacja prądu, stabilność
 - metodyka wyznaczania prądu kompensującego
 - wpływ zmienności parametrów układu na jakość sterowania
- Wdrożenia opracowanych systemów RKA dużej mocy
- Podsumowanie

Motywacja do stosowania kompensatorów, w tym RKA

Przyczyny techniczne

niska jakość prądu zasilającego		
niska jakość napięcia zasilającego	zmniejszenie sprawności procesu dostarczania energii do odbiorcy	
niepoprawna lub mniej efektywna praca odbiorów	nieprawidłowa praca układów zabezpieczeń	
niepoprawne działanie elementów automatyki		
zagrożenie rezonansem		

- Przyczyny ekonomiczne
 - wynikające z przyczyn technicznych
 - kary umowne
- Wymagania i zalecenia formalne
 - Rozporządzenie Ministra Gospodarki w sprawie szczegółowych warunków funkcjonowania systemu elektroenergetycznego (2007)
 - normy: PN-EN 50160, IEEE 519-1992, PN-EN 61000-3-2 (<16 A), PN-EN 61000-3-12 (16–75 A), PN-EN 61000-2-2, PN-EN 61000-2-4

Możliwości kompensacyjne RKA

Ozn	Rodzaj zadania kompensacyjnego RKA		Podstawowe cele realizacji zadania kompensacyjnego	
1a	kompensacja mocy biernej	zwiększenie stopnia wykorzystania wydolności energetycznej układu zasilania (poprawa współczynnika mocy)		
1b	ające	kompensacja wyższych harmonicznych prądu zasilającego wraz z ich niesymetrią	zmniejszenie strat przesyłu e	zmniejszenie odkształceń harmonicznych napięcia
1c	ı zasil	kompensacja niesymetrii podstawowej harmonicznej prądu zasilającego		symetryzacja napięcia
1d	prądu	kompensacja prądu w przewodzie neutralnym		zmniejszenie odkształceń napięcia
1e	ensacja	kompensacja składowych interharmonicznych i podharmonicznych prądu zasilającego		zmniejszenie odkształceń napięcia, w tym odpowiedzialnych za migotanie światła
1f	kompe	kompensacja składowych nieokresowych prądu zasilającego, z pominięciem udarów		zmniejszenie nieokresowych odkształceń napięcia
1g	-	kompensacja udarów prądu	łagoc chwil	dzenie zapadów napięcia; wyrównanie przebiegu lowej mocy obciążenia
2	regulacja napięcia zasilającego		regulacja profilu napięcia zasilającego	
3	tłumienie rezonansów występujących w sieci zasilającej		stabilizacja układu zasilania, zmniejszenie odkształceń napięcia	

Oddziaływanie RKA na sieć zasilającą wokół PCC

Układ zasilania bez RKA

Oddziaływanie RKA na sieć zasilającą wokół PCC

Układ zasilania z RKA

Efekty pracy RKA

- zmiana prądu zasilającego
- zmiana napięcia w pobliżu PCC
- zmiana prądu odbiorów przyłączonych w pobliżu PCC

Podatność napięciowa odbiorów

Efekty pracy RKA – zmiana prądu odbiorów

Wpływ RKA na napięcie E_{PCC}

Odbiór o char. prądowym

$$\begin{cases} \frac{\Delta I_{\rm L1}}{I_{\rm L1}} = 0\\ \frac{\Delta I_{\rm Ln}}{I_{\rm Ln}} = 0 \end{cases}$$

Odbiór o char. napięciowym

Warunki pracy i wymagania wobec RKA

Warunki pracy RKA zależą od:

- podatności napięciowej odbiorów w pobliżu PCC (w tym kompensowanych)
- zmienności prądu (mocy) kompensowanych odbiorów
- jakości napięcia w PCC
- względnej mocy zwarciowej w PCC określonej zarówno ze względu na moc kompensowanych odbiorów jak i moc RKA

Wymagania wobec RKA:

- odporność na złe warunki pracy i ich zmiany
- brak negatywnego oddziaływania na sieć (brak tętnień prądu RKA)
- wysoka dynamika i dokładność kształtowania prądu

Agenda

- Uwarunkowania aplikacyjne równoległych kompensatorów aktywnych (RKA)
- Obwody główne RKA
 - model układu
 - obwód sprzęgający przekształtnik z siecią zasilającą
 - struktury obwodów RKA dużych mocy
 - metodyka doboru parametrów obwodowych
- Sterowanie RKA
 - regulacja prądu, stabilność
 - metodyka wyznaczania prądu kompensującego
 - wpływ zmienności parametrów układu na jakość sterowania
- Wdrożenia opracowanych systemów RKA dużej mocy
- Podsumowanie

Model obwodów głównych RKA

Obwód sprzęgający – wymagania, struktury

Podstawowe wymagania wynikają z konieczności:

- zapewnienia wysokiej dynamiki prądu kompensującego
- ograniczenia wysokoczęstotliwościowych tętnień prądu

Obwód	Schemat ideowy	Transmitancja operatorowa $G_{u o i2}(s)$
L	$u \stackrel{i}{\longrightarrow} \stackrel{L}{\longrightarrow} e_{PCC}$	$\frac{1}{Ls}$
LC	$u \xrightarrow{L_1} i_1 i_2 e_{PCC} \xrightarrow{L_S} e$	a) $\frac{1}{L_{\rm l}s} \Leftarrow L_{\rm S} = 0$
	$u_c \bigwedge \frac{\Psi I_c}{\Xi} C$	b) $\frac{1}{L_1 L_S C s^3 + (L_1 + L_S) s} \iff L_S > 0$
LCL	$ \begin{array}{c} \boldsymbol{u} L_{1} \boldsymbol{i}_{1} \boldsymbol{i}_{2} L_{2} \boldsymbol{e}_{PCC} \\ \boldsymbol{u}_{C} \underbrace{\bigvee_{i}}_{c} C \underbrace{\bigcup_{i}}_{c} C \underbrace{\bigvee_{i}}_{c} C \underbrace{\bigvee_{i}}_{c} C \underbrace{\bigvee_{i}}_{c} C$	$\frac{1}{L_1 L_2 C s^3 + (L_1 + L_2) s}$
LCL+R	$ \begin{array}{c} \boldsymbol{u} L_{1} \boldsymbol{i}_{1} \boldsymbol{i}_{2} L_{2} \boldsymbol{e}_{PCC} \\ \boldsymbol{u}_{c} \wedge \underbrace{ \underbrace{ \underbrace{ I}_{c} }_{c} C \\ \underbrace{ I}_{c} R_{c} \\ \underbrace{ I}_{c} \\ \end{array} \right) $	$\frac{CR_{c}s+1}{L_{1}L_{2}Cs^{3}+(L_{1}+L_{2})CR_{c}s^{2}+(L_{1}+L_{2})s}$

Obwód sprzęgający – porównanie struktur LCL i L

$$L' = \lim_{\omega \to 0} \left(L_1 + L_2 - \omega^2 L_1 L_2 C \right) = L_1 + L_2 \qquad \frac{L''}{L'}$$

$$L'' = 4\pi^2 f_{\rm imp}^2 L_1 L_2 C - L_1 - L_2$$

$$\frac{L''}{L'} = \frac{L}{L_1 + L_2} \bigg|_{\text{STATCOM}} = \frac{f_{\text{imp}}^2}{f_{\text{r,LCL}}^2} - 1$$

 $\frac{f_{\text{imp}}}{f_{\text{r,LCL}}} > 3 \implies \frac{L}{L_1 + L_2} \bigg|_{\text{STATCOM}}$

>8

Obwód sprzęgający – porównanie struktur LCL i LC

Obwód sprzęgający – porównanie struktur LCL i LCL+R

 $R_{\rm c} \approx \frac{1}{2\pi \cdot f_{\rm imp}C}$ – dla sterowania z regulatorem prądu PI

Uwarunkowania dla obwodów RKA dużej mocy

Minimalna częstotliwość rezonansowa LCL: $f_{r,LCL} = 2 \text{ kHz}$

stabilność układu regulacji

Minimalna częstotliwość impulsowania VSI: $f_{imp} = 8 \text{ kHz}$

straty łączeniowe półprzewodników falownika

Maksymalna moc RKA z pojedynczym, dwupoziomowym VSI: $S_{\rm RKA,max} \approx 300 \text{ kVA}$

możliwe rozwiązania

System RKA z wieloma falownikami pracującymi równolegle System RKA z falownikiem (falownikami) wielopoziomowymi

Obwody RKA dużej mocy – niezależne obwody LCL

Obwody RKA dużej mocy – zintegrowany obwód LCL (A)

Obwody RKA dużej mocy – zintegrowany obwód LCL (B)

Obwody RKA dużej mocy – układ czteroprzewodowy (B)

Obwody RKA dużej mocy – odłączanie modułów

Dobór parametrów obwodowych

Parametry obwodowe RKA warunkują:

- dynamikę graniczną prądu kompensującego i2
- zawartość tętnień w prądzie kompensującym i2
- zawartość tętnień w prądzie i1
- składową bierną prądu i_1 przeładowującą kondensator C
- koszt, masę i gabaryty układu

Właściwości źródła napięcia *u*:

- charakter impulsowy (f_{imp})
- ograniczenie:

$$-\frac{2}{3}u_{\rm DC} < u < \frac{2}{3}u_{\rm DC}$$

Dobór parametrów – składowa bierna i_1 ; dynamika i_2

Dobór parametrów – dynamika graniczna prądu i₂

Dobór parametrów – dynamika graniczna prądu i_2

Dobór parametrów – wartość ilorazu $\rho = L_1/L_2$

$$\begin{cases} I_{1,\text{tętn},\text{p-p}}^{\text{wzgl}} = \frac{1}{2\rho} + \frac{1}{2} \\ C^{\text{wzgl}} = \frac{(\rho+1)^2}{4 \cdot \rho} \end{cases}$$

Agenda

- Uwarunkowania aplikacyjne równoległych kompensatorów aktywnych (RKA)
- Obwody główne RKA
 - model układu
 - obwód sprzęgający przekształtnik z siecią zasilającą
 - struktury obwodów RKA dużych mocy
 - metodyka doboru parametrów obwodowych
- Sterowanie RKA
 - regulacja prądu, stabilność
 - metodyka wyznaczania prądu kompensującego
 - wpływ zmienności parametrów układu na jakość sterowania
- Wdrożenia opracowanych systemów RKA dużej mocy
- Podsumowanie

Metody kompensacji realizowanej przez RKA

Kompensacja w układzie otwartym

Kompensacja w układzie zamkniętym

Struktura układu sterowania RKA; organizacja czasowa

Regulacja prądu - wymagania

Wymagania wobec regulatora prądu RKA:

- wysoka dynamika regulacji
- wysoka dokładność regulacji w granicach dysponowanej dynamiki
- kompensacja opóźnienia pomiędzy sprzężeniami i sterowaniem
- predykcja o horyzoncie 3 kroków próbkowania T_{sampl} , wynikająca z rzędu obwodu sprzęgającego LCL
- blokowanie rezonansu obwodu sprzęgającego LCL
- poprawna praca w warunkach niskiej jakości napięcia zasilającego
- możliwość regulacji nieokresowego prądu zadanego
- zdolność ograniczania maksymalnej wartości prądu
- odporność na błędy identyfikacji parametrów modelu obiektu
- możliwość współpracy z RKA przeznaczonym zarówno dla sieci z trzema jak i czterema przewodami roboczymi

Regulator predykcyjny oparty na modelu obiektu

$$\hat{u}_{c}(k-1) = T_{sampl} \frac{i_{1}(k-1) - i_{2}(k-1)}{C} + u_{c}(k-2)$$

$$\hat{i}_{1}(k) = T_{sampl} \frac{u^{zad,\lim}(k-1) - \hat{u}_{c}(k-1)}{L_{1}} + i_{1}(k-1)$$

$$\hat{i}_{2}(k) = T_{sampl} \frac{\hat{u}_{c}(k-1) - \tilde{e}_{PCC}(k-1)}{L_{2}} + i_{2}(k-1)$$

$$\hat{u}_{c}(k) = T_{sampl} \frac{\hat{i}_{1}(k) - \hat{i}_{2}(k)}{C} + \hat{u}_{c}(k-1)$$

$$\hat{u}_{c}(k+1) = L_{2} \frac{i_{2}^{zad}(k+2) - i_{2}^{zad}(k+1)}{T_{sampl}} + \tilde{e}_{PCC}(k+1)$$

$$\hat{i}_{1}(k+1) = C \frac{\hat{u}_{c}(k+1) - \hat{u}_{c}(k)}{T_{sampl}} + i_{2}^{zad}(k+1)$$

$$u^{zad}(k) = L_{1} \frac{\hat{i}_{1}^{lim}(k+1) - \hat{i}_{1}(k)}{T_{sampl}} + \hat{u}_{c}(k),$$

Równania główne

Regulator predykcyjny – predykcja napięcia sieci

2. DFT z predykcją

Regulator predykcyjny – odpowiedź skokowa, właściwości

Regulator predykcyjny wyróżnia (odniesieniu do *deadbeat*):

- uwzględnienie ograniczeń zarówno sterowania, jak i dowolnych zmiennych stanu obiektu
- bezpośrednie odprzężenie od zakłócenia (napięcia e_{PCC})
- uwzględnienie predykcji zadanego prądu kompensującego RKA (dokładna regulacja prądu w granicach osiągalnej dynamiki)

Regulator predykcyjny – dokładność regulacji

RKA czterogałęziowy – generowanie mocy biernej

Stabilność – linie pierwiastkowe

Stabilność – linie pierwiastkowe

Wyznaczanie prądu zadanego

Strategie pełnej kompensacji:

- stała wartość mocy chwilowej p przy q = 0
- równokształtność prądu i napięcia (λ =1)
- równokształtność ze składową zgodną podstawowej harmonicznej napięcia

Zadania algorytmu:

- wyodrębnianie kompensowanych składowych prądu odbiorów
- realizacja ograniczeń z uwzględnieniem priorytetów kompensacji
- predykcja zgodnie z wymaganiami regulatora prądu

Wymagania:

- wysoka dokładność
- szybka odpowiedź na zmianę prądu kompensowanych odbiorów
- praca niezależna od jakości napięcia zasilającego

Wyznaczanie składowych prądu kompensującego

Wyznaczanie prądu – predykcja, stan ustalony

Wyznaczanie prądu – predykcja, stan ustalony

Wyznaczanie prądu – predykcja, stan przejściowy

Kraków, 19.06.2013

41

Wpływ zmienności parametrów na jakość sterowania

Sterowanie systemem RKA ze zintegrowanym obw. LCL

Agenda

- Uwarunkowania aplikacyjne równoległych kompensatorów aktywnych (RKA)
- Obwody główne RKA
 - model układu
 - obwód sprzęgający przekształtnik z siecią zasilającą
 - struktury obwodów RKA dużych mocy
 - metodyka doboru parametrów obwodowych
- Sterowanie RKA
 - regulacja prądu, stabilność
 - metodyka wyznaczania prądu kompensującego
 - wpływ zmienności parametrów układu na jakość sterowania
- Wdrożenia opracowanych systemów RKA dużej mocy
- Podsumowanie

KWK Bogdanka – system RKA o mocy 1,2 MVA

Parametr	Wartość / cecha	Jednostka
Moc znamionowa systemu	1,2 (4 moduły x 0,3)	MVA
Napięcie zasilające	3 x 400	V
Napięcie po stronie DC	1100	V
Obwody sprzęgające	LCL, niezależne	-

KWK Bogdanka – system RKA o mocy 1,2 MVA

Zespół modułów mocy 2x300 kVA systemu RKA

Maszyna wyciągowa 2,4 MW (zasilana prostownikami tyrystorowymi o mocy 4 MVA)

KWK Bogdanka – pomiar w punkcie A (sieć nn)

Bez kompensacji Tes 🛄 $e_{\rm PCC}$ 500 V/dz. ¹K,RKA 1 kA/dz¹TSC 4 kA/dz4 kA/dz $\iota_{\rm L}$ 4 kA/dz. ls Kompensacja 6000 (.344) - 1.044 **6008**, 66664 90 (<u>1988)</u> LD ATTRA with 2000 STR LOADS nie pressie Stepper 1 Single res CON LOUGH tion of the second 1.000 01.000 bez predykcji COLUMN STREET Oversee 05, 2009 08,20120 100 410.05 1 DOM: NO 4535 (141) 4535 (141) 100.04 (bez harm. 5 i 7) 107.54 1000 1000 10.000

Kompensacja z predykcją (bez harm. 5 i 7)

KWK Bogdanka – pomiar w punkcie B (sieć SN)

Z kompensacją

KWK Ziemowit – system RKA o mocy 2 MVA

KWK Ziemowit – system RKA o mocy 2 MVA

System RKA (2 falowniki NPC)

Jedna z maszyn (łączna moc 14 MW)

Parametr	Wartość / cecha	Jednostka
Moc znamionowa systemu	2 (2 moduły x 1)	MVA
Napięcie zasilające	3 x 6300	V
Napięcie po stronie DC	1800	V
Obwód sprzęgający	LCL, zintegrowany	-

KWK Ziemowit – pomiar w punkcie A (sieć SN)

Z kompensacją

KWK Ziemowit – pomiar w punkcie A (sieć SN)

KWK Ziemowit – wskaźniki jakości energii elektrycznej

Parametr	Przed modernizacją	Po modernizacji
Moc czynna	Min -2696 kW; Max 14600 kW Średnia 4270kW	Min -3609 kW; Max 16519 kW Średnia 2639 kW
Moc bierna	Min -3609 kVar; Max 13406 kVar Średnia 5700 kVar	Min -121 kVar; Max 9449 kVar Średnia 849 kVar
THD _e	Max 14,3 %; Średni 7,6 %	Max ≤ 6 %; Średni 2,5 %
Tg(arphi)	Średni 1,33	Max 0,4; Średni 0,321
Zapady napięcia	11,9 %	7,5 %
Wahania napięcia	14,3 %	7,5 %
Załamania komutacyjne	42 %	23 %

Podsumowanie

- Właściwości funkcjonalne RKA są uwarunkowane zarówno strukturą i parametrami obwodów głównych jak i sterowaniem
- Specyfika pracy RKA wymusza stosowanie obwodu sprzęgającego LCL
- Systemy RKA dużej mocy oparte są na wielu falownikach pracujących równolegle – celowe jest zastosowanie zintegrowanego obwodu sprzęgającego LCL
- Blokami układu sterowania warunkującymi skuteczność kompensacji są regulator prądu i algorytm wyznaczania tego prądu
- Jakość kompensacji jest uzależniona od zastosowania algorytmów predykcyjnych

Dziękuję za uwagę

.....

dr inż. Daniel Wojciechowski dwojc@am.gdynia.pl