Working Active Power Concept in a Three Phase System

Tracy N. Toups Ph.D. Candidate

Division of Electrical and Computer Engineering

Louisiana State University

Outline

- Working Active Power Concept
- Measurement of Working Active Power
- Detrimental Active Power Concept
- Conclusion of Working Active Power Concept
- Future Research Plans

- Everyone pays their power bill
- How is this bill calculated?
- How do we know it's fair?

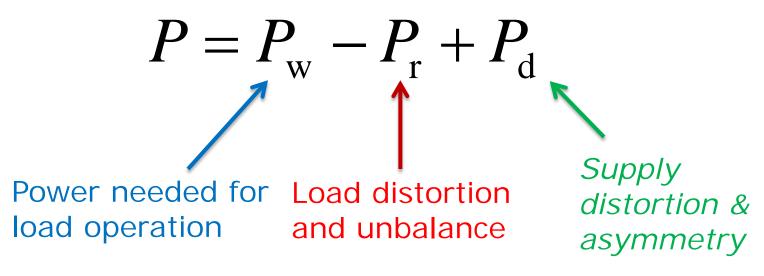
Entergy Louisiana.com			in Street	Residential: 7a-7p; Business: 8a-5p; Mon-Fri			
Total Mo	onthly En	ergy Usa	ige		Account Summary for Enterg	y Customer	
Billing Period	Billing Days	kWh Used	Avg kWh Per Day	2010	Account# 12345678 Invoice# 12345678910	Mail Date 11/02/2010	QPC 07000 Cycle 02
Nov 2010 Nov 2009	33 28	1110 833	33.6 29.8		Amount Due by 11/24/2010	\$98.79 aft	er \$103.73
1500 1125	111				Account Detail		
750 375		ш	пп		Previous Balance		130.1
0	ш	ш	ш		Payment Received	(10/19/2010)	-130.1
	Jac	Ap	Aug Sep Od	88	Remaining Balance		\$0.0

Main component of energy bills month
$$W_a = \int_0^{month} Pdt$$

- \blacktriangleright $W_{\rm a}$ (kWh) is the active energy.
- *P* (kW) is the traditional active power.
- Analog revenue meters are based upon this principle.

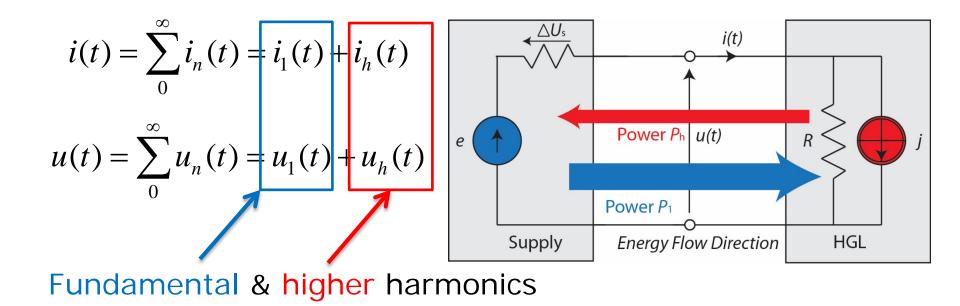
- Economics of power system is important.
- Current billing standards are outdated.
- Can these standard still be used?

New technologies bring new challenges

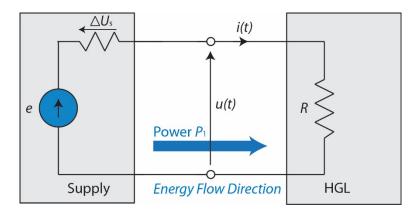

- Additional distortion and asymmetry.
- Causes extra, unaccounted for power losses.

Active power concept needs further decomposition.

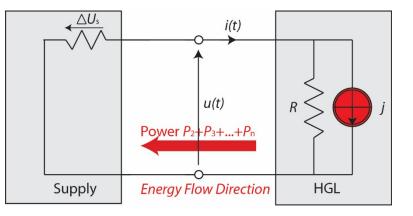
One party is not being accurately compensated, financially.


- New concept of *working active power*
 - Pinpoints the source of degradation.
 - Everyone is accurately compensated.

Active power consist of several quantities


Reflected Power, P_r refers to revenue loss of utility.

Detrimental Power, P_d refers to customer overpayment.


- Voltage supply is 1Φ and sinusoidal.
- Load is a resistive harmonic generating load (HGL).

Fundamental harmonic

Supply e is sinusoidal (e_1)

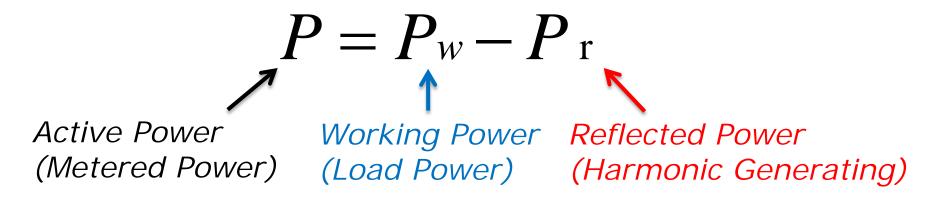
HGL,
$$j = j_2 + j_3 + \ldots + j_n$$

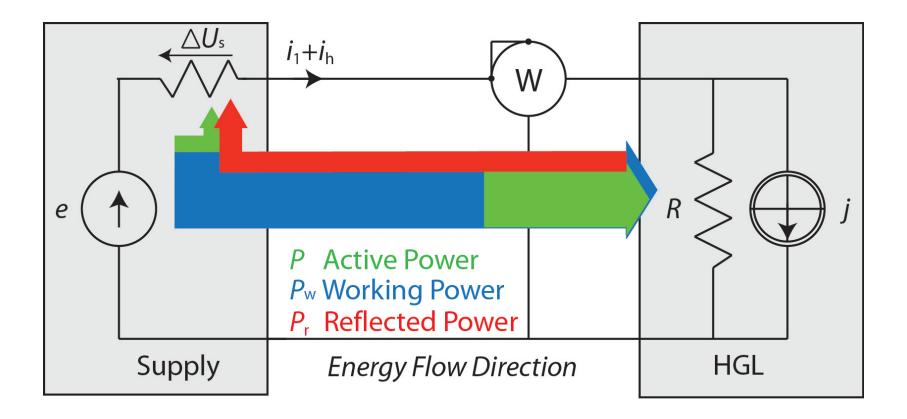
Circuit analyzed per harmonic order

The harmonic power components are considered negative.

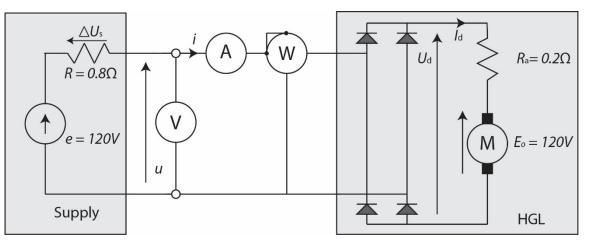
$P_2, P_3, P_4, ..., P_n < 0$

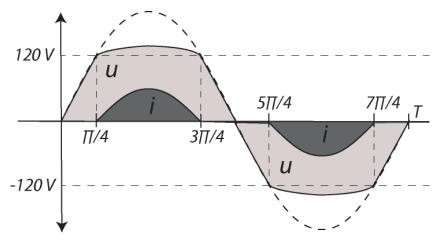
The active power at the load terminals is equal to

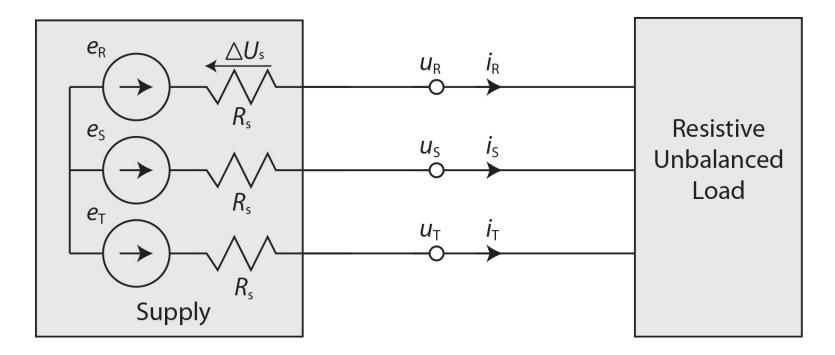

$$P = \underline{P_1} + \underline{P_2} + \underline{P_3} + \ldots + \underline{P_n}$$


Load Power HGL sends back energy

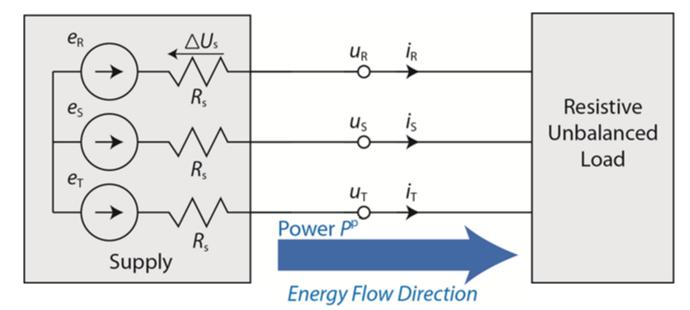
Harmonic powers are referred as reflected active power


$$P_{\rm r} = -(P_2 + P_3 + P_4 + ... + P_n)$$

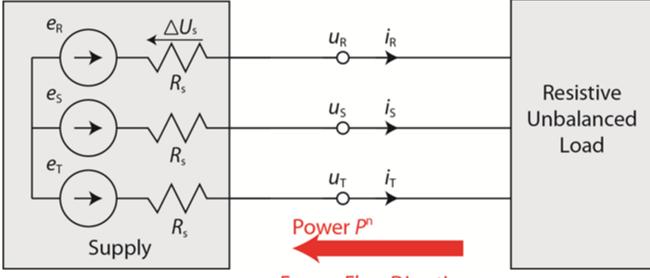

Fundamental power is referred as *working active power*



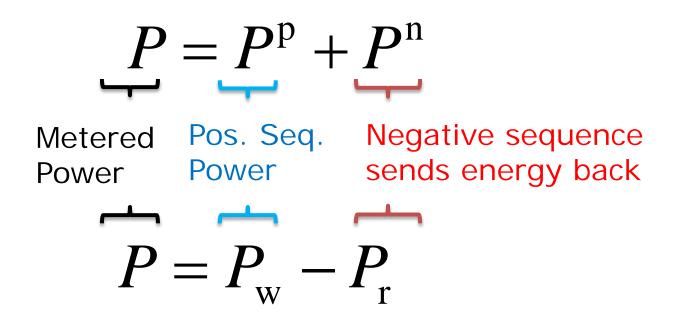
- Assumptions
 - Lossless rectifier
 - Neglect armature inductance
- Results
 - I₁ = 21.8 [A] and U₁ = 102.56 [V]
 - *I*_s = 25.47 [A]
 - *P* = 2097 [W]
 - *P*_w = 2235.8 [W]
 - *P*_r = *P*_w *P* = 138.8 [W]



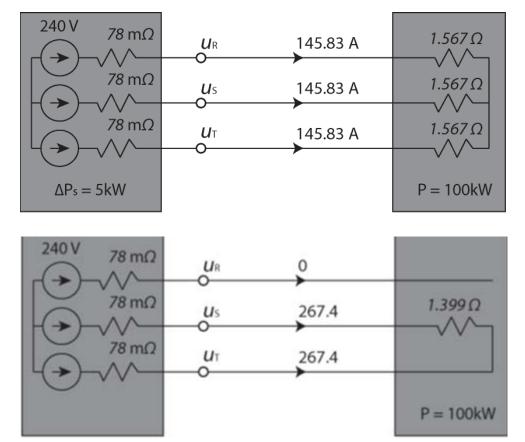
Three phase, three wire system with a sinusoidal, symmetrical voltage supply.


Positive sequence components produce the positive sequence power.

 $P^{\rm p} = 3U^{\rm p}I^{\rm p}\cos\theta^{\rm p}$


Negative sequence components produce the negative sequence power.

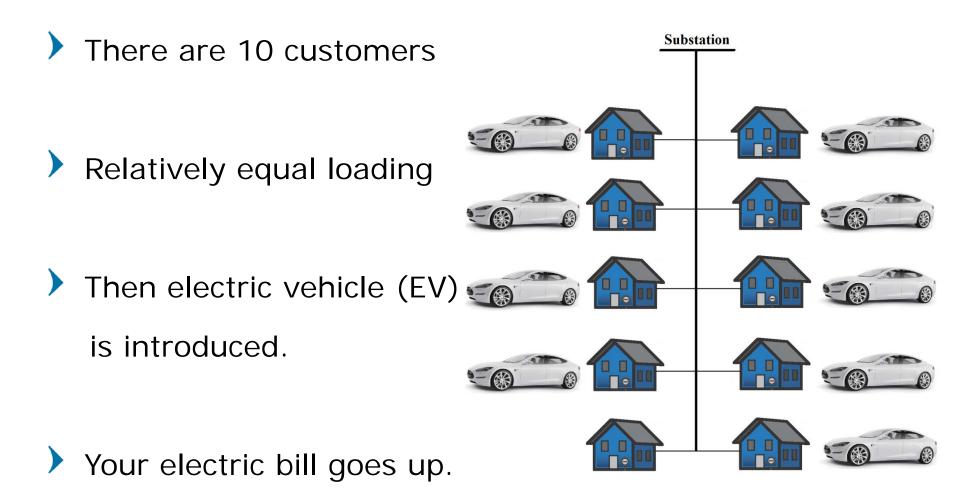
 $P^{n} = 3U^{n}I^{n}\cos\theta^{n}$

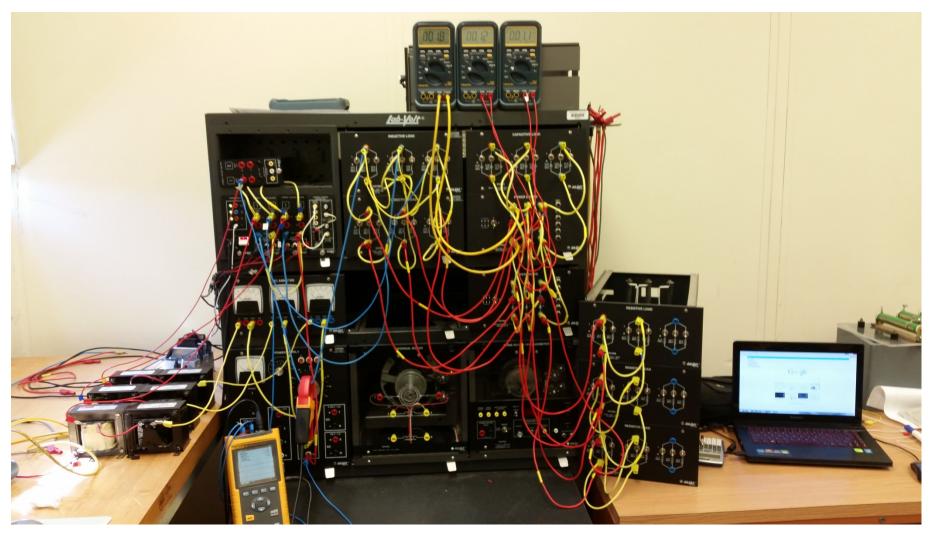

Energy Flow Direction

The active power at the load terminals consist of

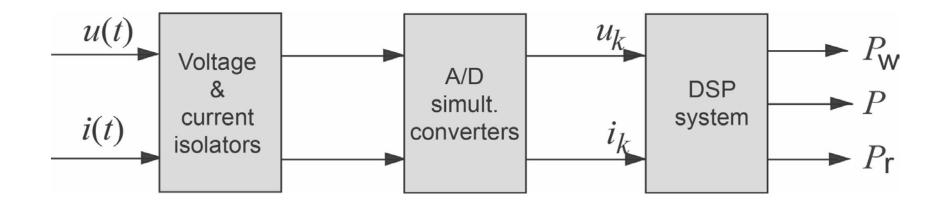
Assumptions

- Loads have equal 30 Power
- Symmetrical Voltage Supply
- Results for unbalanced
 - U^P = 228 and U^N = 11.8 [V]
 - *I*^P = 154.4 and *I*^N = -154.4 [A]
 - P = 100k [W]
 - *P*_w = 105.6k [W]
 - $P_{r} = P_{w} P = 5.6k [W]$




HGLs requires more power than equivalent linear time invariant (LTI) loads from generators.

$$P_{\mathrm{W}_{\mathrm{(HGL)}}} > P_{\mathrm{W}_{\mathrm{(LTI)}}}$$


Extra power is automatically included in energy bills.

Without pinpointing the specific customer at fault, this power loss is spread across the entire customer base.

Block diagram of the experimental setup

> A/D converters provides simultaneous 14 bit resolution.

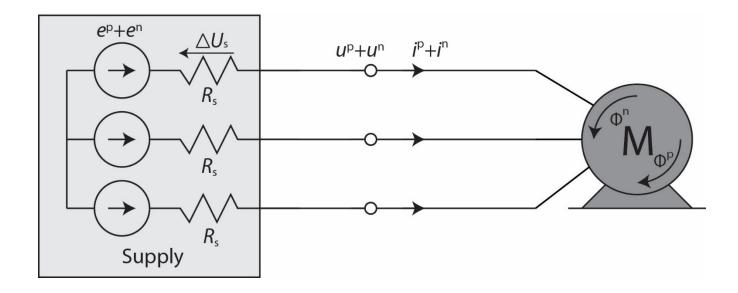
Accuracy was tested against Weston analog meters.

Measured Quantity	Analog meter (e _a)	DSP meter (e _d)	Combined Accuracy
Voltage	0.25%	0.12%	0.28%
Current	0.25%	0.15%	0.29%

Experimental results for single phase

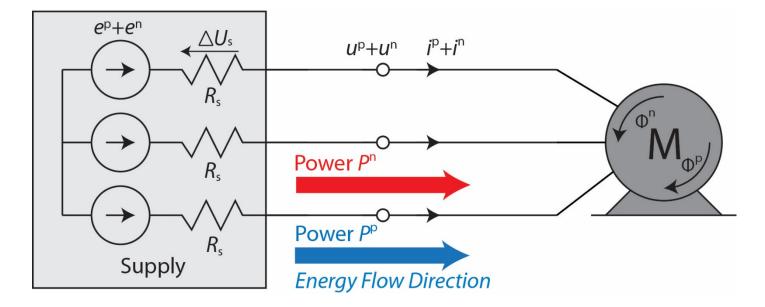
Experiment	<i>P</i> [W]	<i>P</i> _w [W]	P _w /P
Resistive Load	131.0	131.0	1.000
GE Microwave	1280	1310	1.015
10x CFL Bulbs	132.0	139.0	1.036
Xbox Console	74.0	78.0	1.039
Rectifier	178.0	185.0	1.032

Experimental results for three phase loads


Experiment	<i>P</i> [kW]	P _w [kW]	P _w /P
Balanced Load	40.0	40.0	1.000
Unbalanced Load	37.3	38.0	1.019
3 Phase Rectifier	38.6	39.4	1.037

Few percentages can add up to substantial losses over the entire power grid.

Experimental results with varying supply impedance


S _{SC} / S _L	<i>P</i> [W]	<i>P</i> _w [W]	P _w /P
20	76.0	79.8	1.05
15	76.4	83.0	1.09
10	70.3	78.1	1.11
5	69.7	80.5	1.18
4	75.3	85.7	1.27
3	73.1	99.7	1.36
2	50.8	76.6	1.51

Supply voltage with negative and positive sequence components

The active power measured at the motor terminals are

 $P = P^{p} + P^{n}$

Motor current contains positive and negative sequence.

The active power at the motor terminals consist of

$$P = P^{p} + P^{n}$$

Converts to

Reduces motor torque output power* Increases heat & wear

* Minus losses of the motor

Pⁿ should be regarded as *detrimental active power*

$$P_{\rm d} = P^{\rm n}$$

> P^o should be regarded as **working active power**

$$P_{\rm w} = P^{\rm p}$$

Supply voltage harmonics harm the motor.

$$P_{\rm h} = P_2 + P_3 + P_4 + \ldots + P_n$$

This harmonic power can be regarded as detrimental

$$P_{\rm d} = P^{\rm n} + P_{\rm h}$$

- Refinery owns large motor (\$1 million) for 25 years.
- > Typical winding losses are 2~3%
- Detrimental power loss of 2% shortens lifespan ~5 yrs.

 $\frac{\$1,000,000}{25\,\text{yrs.}} = \$40,000 \,/\,\text{yr.}$

 $5 \text{ yrs.} \times \$40,000 / \text{ yr.} = \$200,000$

> Plus detrimental power (P_d)

Customers should only be billed for useful power $(P_w)_{33}$

Conclusion of Working Active Power Concept

$$P_{\rm w} = P + P_{\rm r} - P_{\rm d}$$

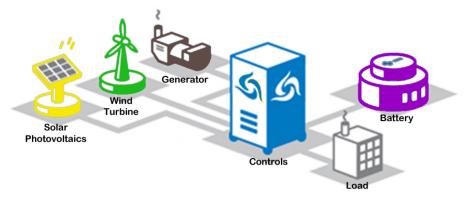
Working active power is a fair way to bill customers.

If,
$$P_{\rm W} - P > 0$$

Reflected active power, customer underpays utility.

If,
$$P_{\rm W} - P < 0$$

Detrimental active power, utility overcharges customer.


Experimentation on induction motors and power electronic loads.

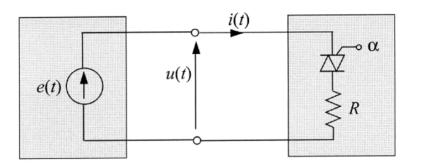
Experimentation on microgrids via advanced metering infrastructure (AMI).

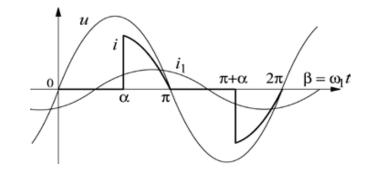
Create a realistic economic model.

> Push industry and regulatory bodies to standardize.

Microgrid's power quality via AMI.

Electric vehicle's impact on power quality




• Definition of apparent power "S." $S = \sqrt{P^2 + Q^2} = S_G$

 $S = U_{A}I_{A} + U_{B}I_{B} + U_{C}I_{C} = S_{A}$ $S = \sqrt{U_{A}^{2} + U_{B}^{2}} \sqrt{I_{A}^{2} + I_{B}^{2}} + I_{C}^{2} = S_{B}$

- Apparent power and power factor have different values.
 - $S_{\rm G} = 72.6 \text{kVA} \qquad \lambda_{\rm G} = 1 \qquad P = 72.6 \text{kW}$ $S_{\rm A} = 83.8 \text{kVA} \qquad \lambda_{\rm A} = 0.86$ $S_{\rm B} = 102.7 \text{kVA} \qquad \lambda_{\rm B} = 0.71$

- What phenomena is responsible for reactive power "Q"?
- Common answer: magnetic fields and energy oscillation.

Correct answer: phase shift
(even in non-reactive elements)

 $P = VI\cos(\theta)$

 $Q = VI\sin(\theta)$

- Active compensator (filter) for three phase systems.
- Injects negative current into the line.

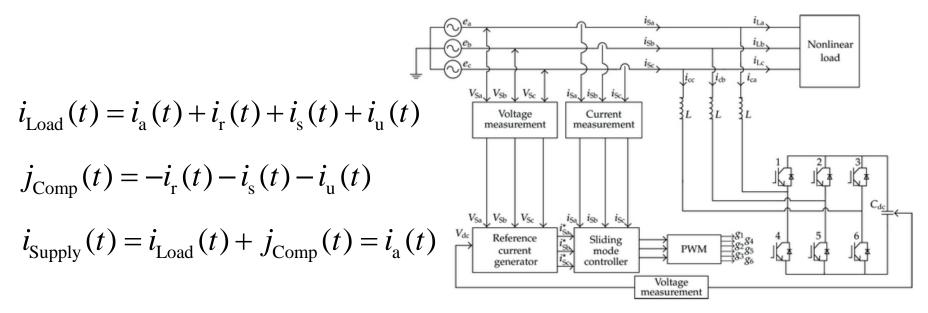


Image source: http://www.hindawi.com/journals/mpe/2012/549782/fig1/

Target Journals

- IEEE Transactions on Instrumentation & Measurement
- IEEE Transactions on Power Delivery
- IEEE Transactions on Power Electronics
- Przegląd Elektrotechniczny (Polish journal started 1919)
- Target Conferences
 - ISNCC (Int'l School of Nonsinusodial Currents and Compensation)
 - IEEE Int'l Power & Energy Society Conference
 - IEEE Int'l Instrumentation and Measurement Conference
 - IEEE Innovative Smart Grid Technologies Conference

Major Federal Agencies

- Department of Defense (DoD): Young Investigator Program
- Department of Energy (DoE): Early Career Research Program
- National Science Foundation (NSF): Faculty Early Career Development

Other Agencies

- Nuclear Regulatory Commission (NRC)
- Smart Grid Investment Grant (SGIG)
- Private Industries (SEL, utilities and local consulting firms)

Power protection laboratory

- SEL (Schweitzer) Microprocessor based relays
- Westinghouse mechanical relays
- Omicron relay test sets
- Beckwith Electric Co. relays

Power electronics laboratory

- LabVolt based laboratory center
- Can also be used as electrical machine lab.
- Power quality & harmonics laboratory
 - LabVolt based laboratory center
 - Individual components are custom built

ab-Volto

Thank You