Application of the **Tektronix Power Analyzer PA4000** for an investigation of the selected problems in the power electronics





Adrian Drzazga Application Engineer





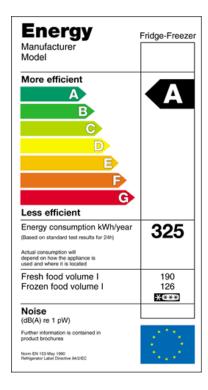
# Agenda

- Some problems with the Power Quality (PQ)
- Power Electronics PQ Point of View
- What does Power Analyzer PA4000 do?
- Power Electronics / Applications
- Conclusions



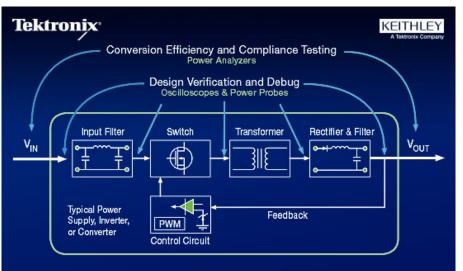
Some problems connected with the Power Quality

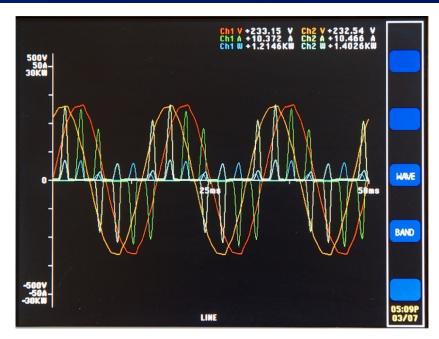
Why should we focus on the Power Conversion?


# Global energy consumption will grow 53% between now and 2035

| Trend #1: | Government regulations to reduce power draw- Energy Star European Directive 2005/32/EC- California Energy Commission Clean Energy Act |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|
| Trend #2: | Increasing popularity in battery-driven devices (chargers) and <b>power conversion units (inverters, rectifiers, filters)</b>         |
| Impact:   | increase <b>efficiency in power</b><br><b>conversion</b> , driving change in design techniques and<br>test requirements               |

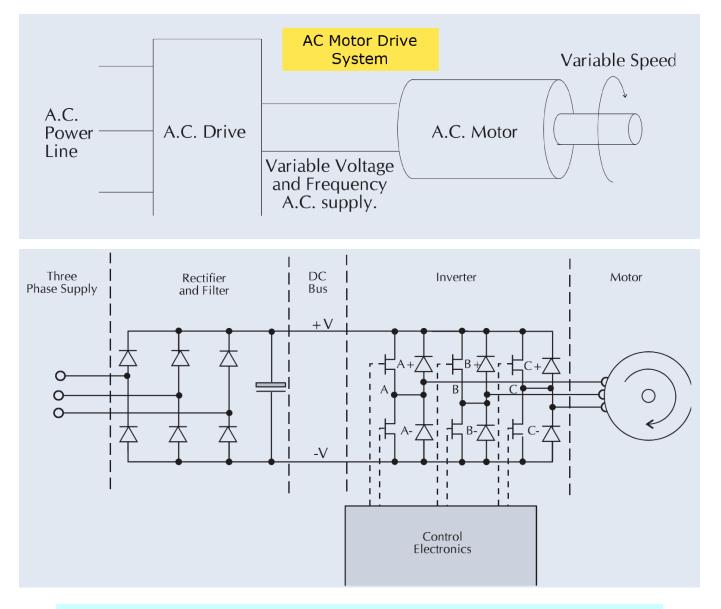



## Some problems connected with the Power Quality


- Input power rating (Watts).
  - Over the range of load and AC line conditions.
- Electrical Energy over time (W-hrs)
- Efficiency and losses
  - Especially of a power supply
- Input Power Factor
  - Especially for lighting
- Input current distortion
  - THD and individual harmonics
- Standby Power and Energy
  - EcoDesign, EnergyStar, IEC62301, IEC5056






## **Power Electronics – PQ Point of View**





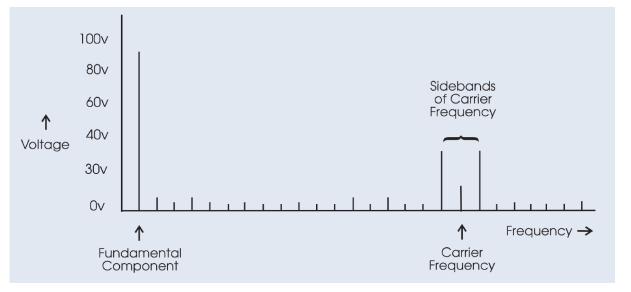
- Complex, PWM waveforms can make setup very time-consuming
- Fast slew rates create common-mode coupling & noise problems
- Changing drive speed requires dynamic synchronization to fundamental frequency
- High current crest factor can affect measurement accuracy
- High-current external transducers may require external power supply
- Multi-parameter testing results in large amounts of data to collect and analyze





## AC Motor Drive System






Pulsed frequency and the influence on the stator voltage the stator current.

Industrial drives operate from a few Hertz up to about 100 Hz with carrier in the range of 2 kHz up to about 10 kHz

Pulsed phase-to-phase voltage
Fundamental wave of the voltage
Current





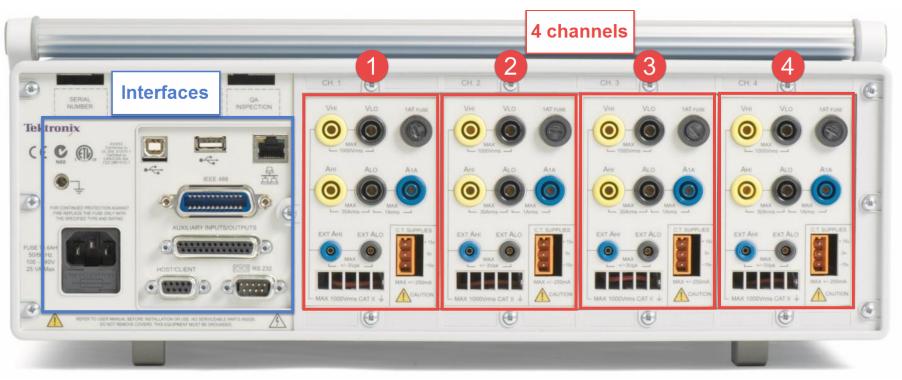
#### **High Carrier Frequencies**

| Advantages                      | Disadvantages                       |
|---------------------------------|-------------------------------------|
| Lower losses in motor           | Higher switching losses in inverter |
| (current more sinusoidal)       | Potential for more radiated radio   |
| No audible noise due to carrier | frequency noise.                    |

# How to find a compromise for a carrier ?



| Drive Section                              | Parameters                                                                                     |  |  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Motor Output Measurements                  | Speed, Torque, Shaft Power                                                                     |  |  |  |  |
| Drive Output Measurements                  | Total Output Power & Power Factor                                                              |  |  |  |  |
|                                            | Fundamental Output Power & PF                                                                  |  |  |  |  |
|                                            | RMS Output Voltage and Current                                                                 |  |  |  |  |
|                                            | Fundamental Output Voltage and Current                                                         |  |  |  |  |
|                                            | Harmonic voltages, currents & powers                                                           |  |  |  |  |
|                                            | Output Frequency                                                                               |  |  |  |  |
| Drive DC Bus Measurements                  | DC Bus Voltage, Current and Power                                                              |  |  |  |  |
| Drive Input Measurements                   | Input Voltage and Current                                                                      |  |  |  |  |
|                                            | Input Power and Power Factor                                                                   |  |  |  |  |
|                                            | Input VA and VARs                                                                              |  |  |  |  |
|                                            | Input Harmonic Currents (including checking to harmonic specifications such as IEC61000-3-2)   |  |  |  |  |
| Efficiency Measurements                    | Efficiency of each section of PWM drive, motor efficiency and overall efficiency               |  |  |  |  |
| Measurements Under Dynamic Load Conditions | Real-time analog outputs representing voltage, current, watts and power factor of drive output |  |  |  |  |


# How to find a compromise for a carrier ?



| ektronix   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P          | <b>44000</b> Power Analyzer | )               |      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|-----------------|------|
| RESULT     | Endor A<br>Ch1     Endor 5<br>Ch2     Endor 5<br>Ch3     Endor 5<br>Ch3     Endor 5<br>Ch3       Yms 119.12     Yms 0.0000     Yms 0.0000     Yms 0.0000     Yms 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | MENUS                       | × - +<br>7 8 9  |      |
|            | Arm: 335.42 mA Arms 0.0000 mA Arms 0.0000 mA Arms 0.0000<br>west 21.801 w west 0.0000 w west 0.0000 w west 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * <u> </u> | ABC DEF                     |                 |      |
| VECTOR     | freq     60.033     Hz     freq     0.0000     Hz     0.0000     Hz     freq     0.0000     Hz     0.0000     Hz     freq     0.0000     Hz     0.0000     Hz |            | GHI JKL                     | SIN COS TAN     | 1    |
| SETUP ZOOM | Vei 1.3910<br>VA 39.954 VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | MNO PORS                    | I Z 3           |      |
| _          | <u>YAr</u> 33.481 YA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | TUV WXYZ                    |                 | - 11 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | HOLD                        | */- (SUTT ENTER |      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                             | ,               |      |

- Measures electrical power (Watts). Provides many other measurements as standard, but this is the prime. The PA4000 is a "wattmeter".
- Measures apparent power (VA), power factor (PF), reactive power (VAr), volts RMS, amps RMS, crest factors, peaks, frequency, total harmonic distortion (THD)





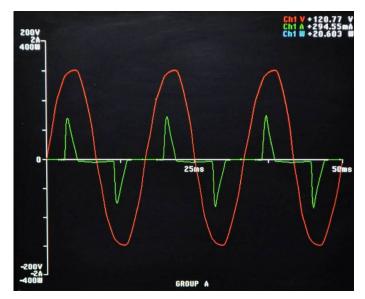
- Measures harmonics of voltage, current and power.
- Measures electrical energy consumption over time (W-h), the rate at which power is consumed.
- Measures standby power in full compliance to standards.



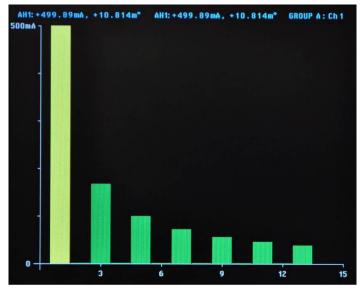
- Precision Matched Voltage/Current Pairs
  - High Resolution 14-bit ADC's
  - Bandwidth up to 1 MHz // Sampling 1 MS/s
- Up to 100th harmonics can be calculated
- Industry's first Spiral Shunt<sup>™</sup> technology (patent application submitted)
  - Maximizes stability over changes in temperature, current level, frequency and other factors
- Unique DSP algorithm
  - For reliably locking onto frequency of the signal-under-test, even in the presence of transients and noise
- High Crest Factor (CF=10)
  - Inputs, measurement circuitry & algorithms are tolerant of the high crest factor commonly seen in today's power electronic devices
- High Measurement Accuracy: 0.04% basic accuracy

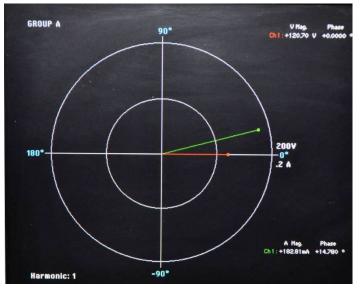
**Uncompromised Measurement Accuracy** 




- Voltage up to 1000 V<sub>RMS</sub>, 2000V<sub>peak</sub>
- Dual internal Spiral Shunt current shunts
  - 30  $A_{\text{RMS}}$  Shunts for current up to 30  $A_{\text{RMS}}$ , 200  $A_{\text{Peak}}$
  - -1 A<sub>RMS</sub> Shunts for optimal resolution on low-current devices
  - Broad range of external current transducers available
    - High-accuracy fixed core CT's up to 1000 Amps

#### Fast Autoranging


- Quickly adapts to changing signals with no gaps in data



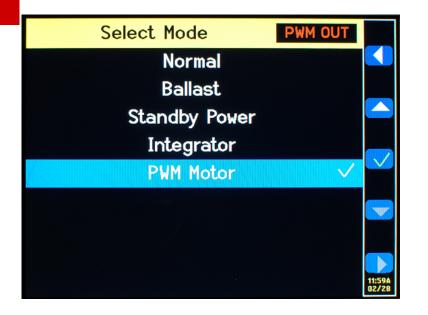





#### **Waveforms**






#### **Polar Plot**

|      | Ch1    |    | PWM OUT<br>Ch2 |    | Sum               |      | AC INPUT<br>Ch3 |        |   |
|------|--------|----|----------------|----|-------------------|------|-----------------|--------|---|
| Watt | 22.755 | w  | 3.5988         | w  | 26 <b>.</b> 354 w | Vrms | 255.96          | v 🚄    |   |
| Vrms | 138.85 | v  | 139.03         | ۷  | 138.94 v          | Arms | 169.39          | mA     |   |
| Arms | 241.63 | mA | 241.03         | mA | 371.33 mA         | Watt | 23.853          |        |   |
| VA   | 33.551 | VA | 33.569         | VA | 89.364 VA         | WHr  | 18.417          | Wh     |   |
| Var  | 24.654 | VA | 33.375         | VA | 85.389 va         | Hr   | 774.53          | mb     |   |
| Freq | 26.449 | Hz | 26.449         | Hz |                   | VA   | 43.356          | VA     |   |
| PF   | 0.6782 |    | 0.1072         |    | 0.2949            | VAr  | 36.205          | VA     |   |
| Vcf  | 2.2337 |    | 2.2066         |    |                   | Freq | 60.011          | Hz     | 2 |
| Acf  | 1.3584 |    | 1.4328         |    |                   | PF   | 0.5502          |        |   |
| Vthd | 1.9678 | %  | 1.8139         | *  |                   | A1m  | 95.403          | mA     |   |
| Athd | 3.3732 | %  | 2.9895         | ж  |                   | A1p  | -7.7309         | •      |   |
|      |        |    |                |    |                   | A2m  | 1.1083          | mA 02/ |   |

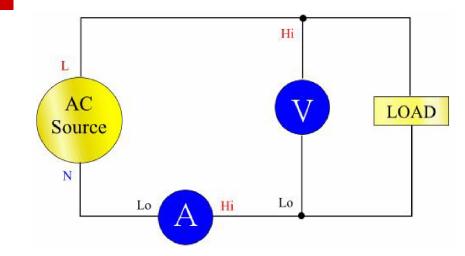
**Harmonics** 

**Results** 





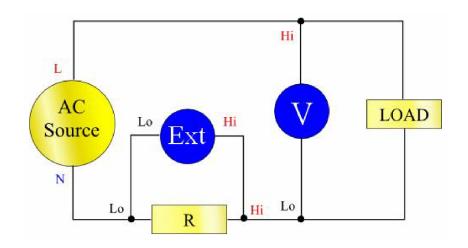
- Normal standard settings
- Ballast electronic lighting ballasts, HF waveforms modulated by the power frequency
- Standby Power power consumption of products while they are in standby mode (Energy Star, IEC 62301)
- Integrator measurements for determining energy consumption (Watt-hours, Ampere-hours)
- PWM Motor making measurements on the complex waveforms commonly found on the motor drives (high frequency signals, rejecting the carrier)



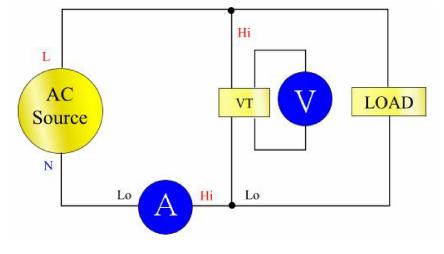




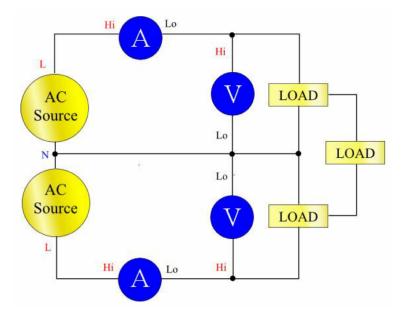

 Rear Panel single Input Module & Interfaces



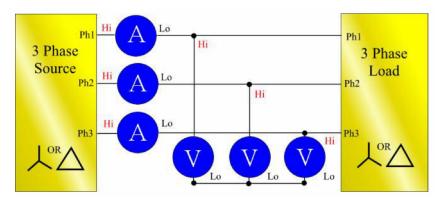




Lo N Lo CL Hi Lo Lo CL Hi Lo

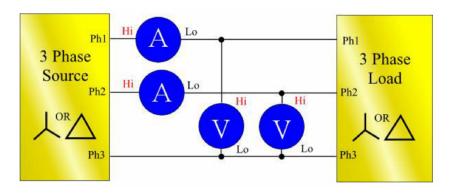
**Standard Circuit** 


#### **Current Transducers**

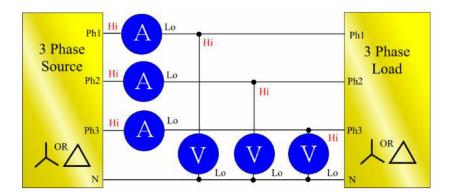



**External Shunt** 



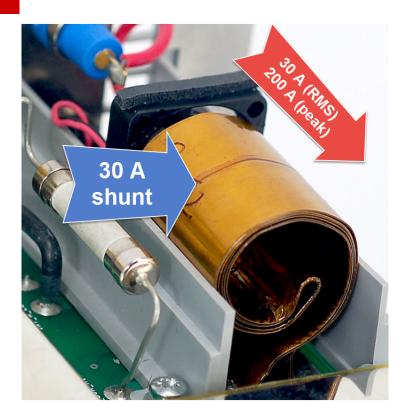

#### Volage Transducer Tektronix®




Single-phase, three-wire



Three-phase, three-wire (3 Wattmeter method)




#### Three-phase, three-wire




Three-phase, four-wire (3 Wattmeter method)



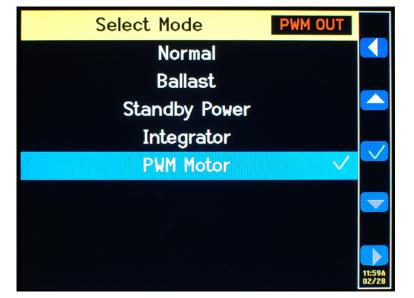


 The spiral construction not only minimizes stray inductance but also provides for high overload capability and improved thermal stability.  The PA4000 employs an innovative Spiral Shunt design that ensures stable, linear response over a wide range of input current levels, ambient temperatures, crest factors, and other variables.







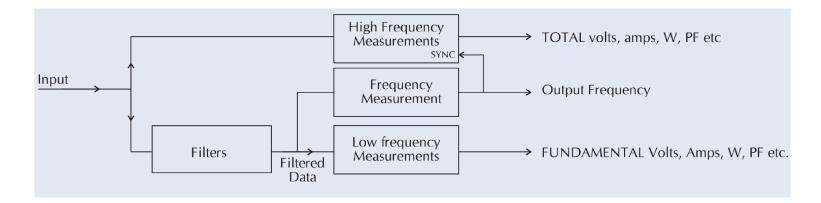

No insertion losses

- Very high accuracy (<0.035%)</li>
- Excellent linearity (< 20 ppm)</li>
- Extremely (< 2.5 ppm/K)</li>
- Wide frequency bandwidth (from DC to 100 kHz)
- Closed loop (compensated) current transducer using an extremely accurate zero flux detector

**Tektronix**<sup>®</sup>

- High immunity to external electrostatic and magnetic fields interference
- Low noise on output signal
- Ideal for the precision and high stability inverters & energy measurement

# **Fixed Core Hall-effect Transducers**

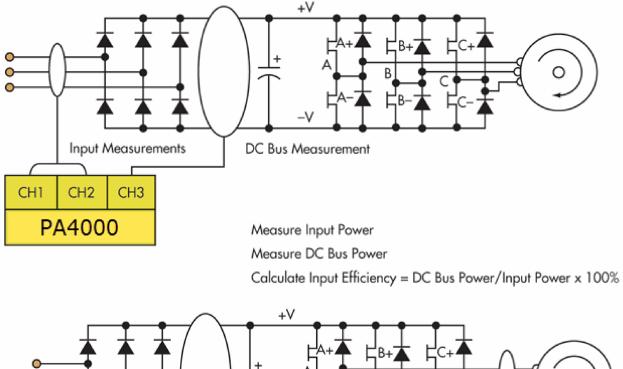


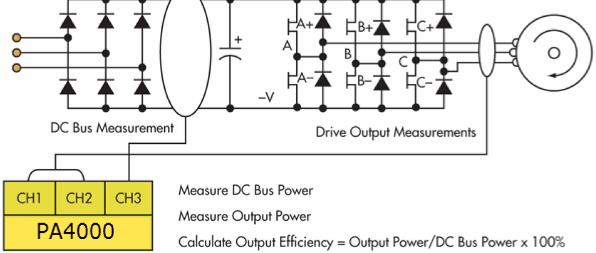

- One-Button PWM Setup
- PWM Mode automatically optimizes filters and timing for testing pulse-width modulated motor drive outputs
- PA4000 includes analog inputs to integrate speed and torque sensors for overall efficiency measurements
- High crest factor (up to 10) for accurate current measurements

# **Dynamic Frequency Synchronization**

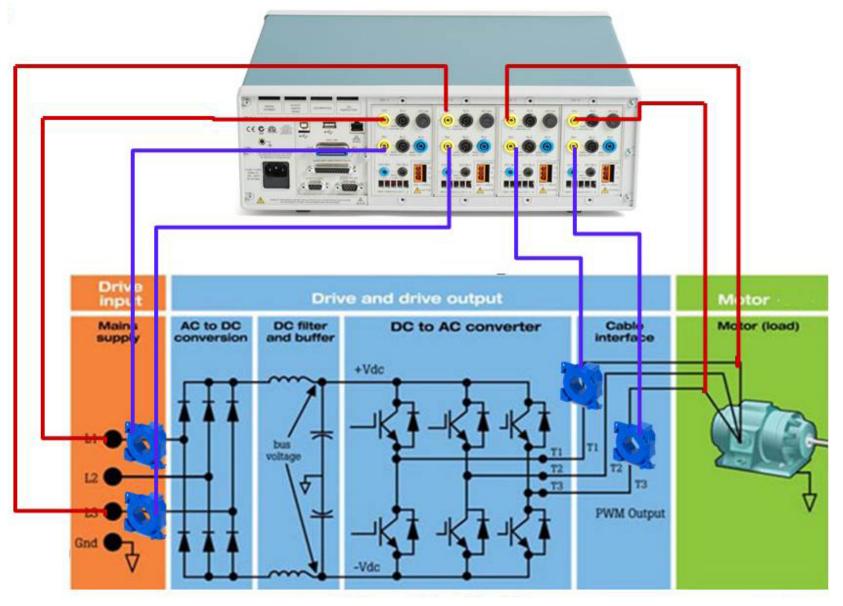
- Precise detection of frequency is critical
  - PWM carrier frequency and noise make frequency detection challenging
  - If the frequency is wrong, the measurements are wrong
- PA4000's unique algorithms quickly detect PWM **fundamental frequency** 
  - Unlike traditional zero-crossing methods, the PA4000 reliably locks onto fundamental frequency
  - Saves you time by quickly adapting to drive / motor speed changes



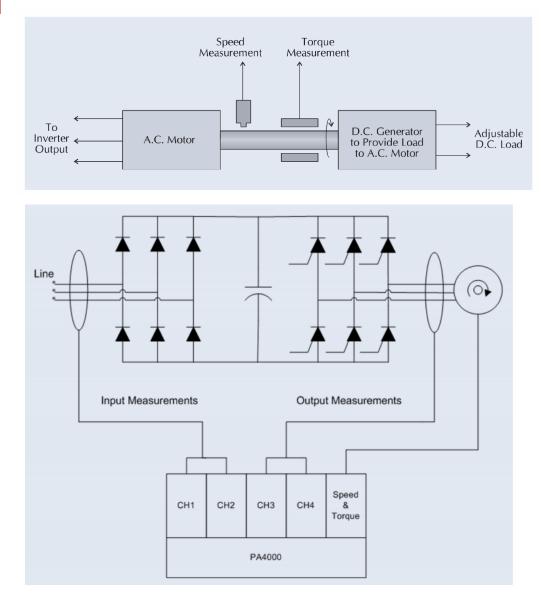




Application filter for each frequency range within the PWM motor drive system

| Filter        | Application                              |  |  |  |  |  |  |
|---------------|------------------------------------------|--|--|--|--|--|--|
| 5Hz to 500Hz  | PWM Drives down to 5Hz output            |  |  |  |  |  |  |
| 0.5Hz to 25Hz | Low speed measurement down to 0.5Hz      |  |  |  |  |  |  |
| 0.1Hz to 25Hz | Very low speed measurement down to 0.1Hz |  |  |  |  |  |  |


**Dynamic Frequency Synchronization / Filtering** 












**Tektronix**<sup>®</sup>



#### Speed & Torque Measurements



### Conclusions

#### **PWM Performance**

|      | SROUP A<br>Ch1 |    |      | GROUP B<br>Ch2 |    |      | GROUP C<br>Ch3 |    |      | GROUP D<br>Ch4      |    |                |
|------|----------------|----|------|----------------|----|------|----------------|----|------|---------------------|----|----------------|
| Vrms | 119.12         | v  | Vrms | 0.0000         | v  | Vrms | 0.0000         | v  | Vrms | 0.0000              | v  |                |
| Arms | 335.42         | mA | Arms | 0.0000         | mA | Arms | 0.0000         | mA | Arms | 0.0000              | mA |                |
| Watt | 21.801         | w  | Watt | 0.0000         | w  | Watt | 0.0000         | w  | Watt | 0.0000              | w  |                |
| Freq | 60.033         | Hz | Freq | 0.0000         | Hz | Freq | 0.0000         | Hz | Freq | 0.0000              | Hz |                |
| PF   | 0.5457         |    | PF   | 0.0000         |    | PF   | 0.0000         |    | PF   | 0.0000              |    | -              |
| Acf  | 5.3700         |    |      |                |    |      |                |    |      |                     |    |                |
| Vef  | 1.3910         |    |      |                |    |      |                |    |      |                     |    |                |
| VA   | 39.954         | VA |      |                |    |      |                |    |      | <u>م منظمة مولا</u> |    |                |
| VAr  | 33.481         | VA |      |                |    |      |                |    |      |                     |    |                |
|      |                |    |      |                |    | _    |                |    |      |                     |    | -              |
|      |                |    |      |                |    |      |                |    |      |                     |    |                |
|      |                |    |      |                |    |      |                |    |      |                     |    | 03:09<br>06/14 |

- Dynamic frequency synchronization
- Accurate with crest factors up to 10
- Peak ranging for high crest factor
- Spiral Shunt technology for improved stability
- DFT algorithm for accuracy

Versatility

- Available with 1 to 4 inputs
- 30A and 1A shunts
- Standard torque and speed sensor inputs
- Harmonic measurements are standard
- USB, LAN, and RS-232 are standard (GPIB opt.)

#### Setup & Analysis



- One-button PWM Setup
- Integrated current transducer supply
- PWRVIEW PC Software is included
- Easy logging to flash drive



Thank You!

